PHY 491, EXAM \#1
 October 3, 2011; Time 1 hr
 Name:

Magnetization of a multiplet with a given total angular momentum \mathbf{J} and Lande gfactor g_{J}
$M=N g_{J} \mu_{E} J B_{J}(x) ; x=g_{J} \mu_{E} J B / k_{B} T$
Where the Brillouin function $B_{J}(x)=\frac{2 J+1}{2 j} \operatorname{coth}\left(\frac{(2 J+1) x}{2 j}\right)-\frac{1}{2 j} \operatorname{coth}\left(\frac{x}{2 j}\right)$
Hydrogen atom ($\mathrm{Z}=1$)
Rydberg constant (R) 13.6 eV ; Bohr radius (a_{B}) $0.529 \mathrm{~A}^{0}$
$R=\frac{m e^{4}}{2 \hbar^{2}}$
$a_{B}=\hbar^{2} / m e^{2}$

Problem\#1. (5 points)

X-ray Laser pulses can be used to strip atoms of electrons one by one (ionize the atom). What is the energy required to remove the last electron from a K atom? The neutral K atom has 19 electrons. The ionization energy of Hydrogen atom is 13.6 eV . What is the size of the Bohr'r radius for this last electron?

THE LAST ELECTRON SEES Z=19. HYDROGEN ATOM WITH Z=19

IONIZATION ENERGY, E_{I}, SCALES AS $\mathrm{Z}^{\mathbf{2}}$ AND POSITIVE

$$
\mathrm{E}_{\mathrm{I}}=13.6 \mathrm{eVxZ}^{2}=4909.6 \mathrm{Ev}
$$

BOHR RADIUS SCHRINKS AND SCALES AS 1/Z. THE NEW BOHR RADIUS IS

$a_{B}=0.52 / \mathrm{Z}$ Angstroms=0.0274 Angstroms

Problem\#2. (5 points)

Consider an electron trapped in a 3-dimensional harmonic oscillator potential. The Hamiltonian in atomic units ($\hbar=m=e^{2}=1$) is given by

$$
H=-\frac{1}{2} \nabla^{2}+\frac{1}{2} r^{2}
$$

Let's use a trial wave function for the ground state of the form $\psi(\vec{r})=\left(1 / \sqrt{\pi \alpha^{3}}\right) e^{-r / \alpha}$. This gives $\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}=\frac{1}{2 \alpha^{2}}+\frac{3}{2} \alpha^{2}$ (Don't derive this)
What is the best variational ground state energy one can get (in units of Hartree)?

$$
\mathrm{E}(\alpha)=1 / 2 \alpha^{2}+3 / 2 \alpha^{2}
$$

MINIMIZE E (α) WITH RESPECT TO THE VARIATIONAL PARAMETER α

$$
\mathrm{dE}(\alpha) / \mathrm{d} \alpha=-2 / 2 \alpha^{3}+(3 / 2) 2 \alpha=0
$$

THIS GIVES THE BEST VARIATIOAL PARAMETER $\alpha^{2}=1 / \sqrt{ } 3$ (MAKE SURE THIS IS A MINIMUM NOT A MAXIMUM)

SUBSTITUTING THIS VALUE OF α^{2} IN THE ENERGY EXPRESSION WE FIND

$$
E_{\min }=E\left(\alpha^{2}=1 / \sqrt{ } 3\right)=\sqrt{ } 3 \text { Hartree }
$$

)

Problem\#3. (10 points)

The electronic configuration of nitrogen atom is $1 s^{2} ; 2 s^{2} ; 2 p^{3}$. Treat $1 s^{2} ; 2 s^{2}$ as core electrons and $2 p^{3}$ as valence electrons.
(i) What is the total spin angular momentum and total orbital angular momentum of the core? Do these core electrons contribute to the magnetic susceptibility χ of the atoms? If so what is the sign of χ ?
$\mathrm{S}=0, \mathrm{~L}=0, \mathrm{~J}=0$: No paramagnetism
There is a negative (usually) small diamagnetic contribution to the magnetic susceptibility (Langevin diamagnetism)
(ii) According to the Hund's rules what is the lowest energy multiplet and what is its degeneracy?

$$
\mathrm{S}=3 / 2 ; \mathrm{L}=0, \mathrm{~J}=3 / 2: \quad{ }^{4} \mathrm{~S}_{3 / 2}
$$

Degenaracy of this lowest energy multiplet $=2 \mathrm{~J}+1=4$
(iii) What is the zero-field magnetic susceptibility of 1 mole of notrogen atoms at a temperature T ?

$$
\chi=\mathrm{N}_{\mathrm{A}}\left[\left(\mathrm{~g}_{\mathrm{J}} \mu_{\mathrm{B}}\right)^{2} \mathrm{~J}(\mathrm{~J}+1)\right] / 3 \mathrm{k}_{\mathrm{B}} \mathrm{~T} \quad \text { Curie Law }
$$

Since $\mathrm{L}=0, \mathrm{~g}_{\mathrm{J}}=2$

$$
\chi=\mathrm{N}_{\mathrm{A}}\left[5 \mu_{\mathrm{B}}^{2}\right] / \mathrm{k}_{\mathrm{B}} \mathrm{~T}
$$

Problem\#4. (5 points)

A He atom is excited to $1 s^{1} 2 p^{1}$ configuration. The one electron spatial wave functions are: $\varphi_{1 \mathrm{~s}}(\mathbf{r})$ and $\varphi_{2 \mathrm{pm}}(\mathbf{r})$.
What is the total number of 2 electron states corresponding to this configuration?
Since 1 electron has to be in the 1 s with spin either up or down (2 possible ways) and the other in one of the 62 ptates (three space orbitals with spin either up or down- 6 possible ways); the total number of 2 electron states $=\mathbf{1 2}$

Write down the 2-electron spin triplet excited state wave functions associated with this configuration.

$$
\begin{aligned}
& (1 / \sqrt{ } 2)\left[\varphi_{1 \mathrm{~s}}\left(\mathbf{r}_{1}\right) \varphi_{2 \mathrm{pm}}\left(\mathbf{r}_{2}\right)-\varphi_{1 \mathrm{~s}}\left(\mathbf{r}_{2}\right) \varphi_{2 \mathrm{pm}}\left(\mathbf{r}_{1}\right)\right] \times\left[\alpha_{1} \alpha_{2} ; \beta_{1} \beta_{2} ;\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) / \sqrt{ } 2\right] \\
& \mathrm{m}=1,0,1
\end{aligned}
$$

Problem \# 5 (5 points)

Write down the wave function for the ground state of H_{2} molecule in molecular orbital (MO) approximation? Express your answer in terms of the 1 s hydrogen atom wave functions associated with the two protons, $a(\vec{r}) ; b(\vec{r})$. Draw qualitatively the ground state electronic energy (in atomic units), the repulsive energy between two protons, and the total energy, as function of the inter-nuclear separation R.

In MO approximation for H 2 molecule we first find single particle states (molecular orbitals). In the simplest case the molecular orbital is formed out of two atomic hydrogen 1 s states associated with two nuclei, denoted as $a(r)$ and $b(r)$ respectively. Since the bonding combination has lower energy we use these bonding orbitals to construct the states for the two electrons.

$$
\varphi_{\mathrm{B}}(\mathbf{r})=\mathrm{N}[\mathrm{a}(\mathbf{r})+\mathrm{b}(\mathbf{r})]
$$

If we now put two electrons in this orbital their spins are opposite; spin singlet

$$
\psi_{\mathrm{MO}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\varphi_{\mathrm{B}}\left(\mathbf{r}_{1}\right) \varphi_{\mathrm{B}}\left(\mathbf{r}_{2}\right)\left[\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) / \sqrt{ } 2\right]
$$

This is just like the ground state of the He atom. Instead of putting the two electrons in the 1 s orbital $\varphi_{1 s}(\mathbf{r})$, you put them in the bonding orbital $\varphi_{\mathrm{B}}(\mathbf{r})$.

SORRY, I CAN'T DRAW THE FIGURE. WILL DO IT IN THE LECTURE

