PHY 491

HW Assignment #1, Sept 2-9, 2011

- 1. Using a hydrogenic model, estimate the 1st ionization energy of Li atom, assuming that the two electrons in the 1s state essentially screen the nuclear charge making the effective charge +1e. The actual value of this 1st ionization energy is 5.39 eV. Discuss possible physical reasons for this difference.
- 2. Calculate the 3rd ionization energy of the Li atom. Is your answer exact?
- 3. What is the probability of finding the 1s electron in Pb^{81+} inside the Pb nucleus? The nuclear radius $R = r_0 A^{1/3}$, where $r_0=1.2$ fermi and A is the atomic number of Pb.
- Binding energies of excitons in quantum wells can be approximated by a 2-dimensional (2d) hydrogen atom model. Show that the radial part of the Schrodinger equation after separating the radial, R(r) and angular Y(θ) parts is given by (in atomic units)

$$\frac{1}{2}\left(R'' + \frac{1}{r}R'\right) - \frac{m^2}{2r^2}R + \left(E + \frac{1}{r}\right)R = 0$$

The angular part of the wave functions are $e^{im\theta}$, R' and R'' are the first and second derivatives of R with respect to r. Use the same scaling that was used for the 3d case in defining the variable $\rho = \kappa r$; $\kappa = \sqrt{-2E}$ to write down a second order differential equation for $R(\rho)$ in terms of the parameter $\rho_0 = \frac{2}{\kappa}$

How does $R(\rho)$ behave as $\rho \to 0$ and ∞ ? Define a function $v(\varrho)$ following the same procedure as for the 3d case. Solve this equation for physical solutions and find the spectrum of the 2d hydrogen atom.