PHY 491
Home Work Assignment \#3
September 19-26, 2011

3.1

What is the total number of configurations for an open shell atom with 4 electrons in the p-shell (p^{4}), as in the oxygen atom. Just give the number.

$$
6 \times 5 \times 4 \times 3 / 4!=6!/ 4!2!=15
$$

What are the different multiplets ${ }^{2 S+1} L_{J}$ for this open shell atom? Give their degeneracies.
${ }^{3} P_{J}$, multiplicity $(2 L+1) x(2 S+1)=(2 x 1+1) x(2 x 1+1)=9$
${ }^{1} D_{J}$, multiplicity $=(2 x 2+1) x(2 x 0+1)=5$
${ }^{1} S_{0}$, multiplicity $=(2 x 0+1) x(2 x 0+1)=1$
Total number of states $=9+5+1=15$ (Checks!)
What is the lowest energy multiplet according to the Hund's rule, before allowing for spin orbit interaction?

According to Hund's $1^{\text {st }}$ rule the multiplet with highest spin multiplicity should have the lowest energy. ${ }^{3} P_{J}$

What is the lowest energy multiplet after spin orbit interaction is included $\left(H_{S O}=\lambda_{S O} \vec{L} \cdot \vec{S}\right)$?

Since for the multiplet ${ }^{3} P_{J}, \mathrm{~L}=1, \mathrm{~S}=1, \mathrm{~J}=2,1,0$. The energies of the states with different J values are:

$$
\begin{aligned}
& \operatorname{Use} E(L, S, J)=\left(\lambda_{s o} / 2\right)[J(J+1)-L(L+1)-S(S+1)] \\
& E(1,1,2)=\lambda_{s o} \\
& E(1,1,1)=-\lambda_{s o} \\
& E(1,1,0)=-2 \lambda_{s o}
\end{aligned}
$$

According to Hund's $3^{\text {rd }}$ rule the multiplet with highest $\mathrm{J}(=\mathrm{L}+\mathrm{S})$ has the lowest energy. This means that $E(1,1,2)$ should be lowest. This happens because for more than half filled shell case the spin orbit coupling $\lambda_{s o}<0$.

What are the spin orbit splittings? You can calculate the splitting!

3.2

Using Hund's three rules, work out the lowest energy multiplets of $\mathrm{d}^{1}, \mathrm{~d}^{3}, \mathrm{~d}^{4}, \mathrm{~d}^{7}$ and $\mathrm{f}^{1}, \mathrm{f}^{3}$,
f^{7}. Compare your results given in the Table 1 and 2 of Chapter 11, Diamagnetism and Paramagnetism, of Kittel.
Calculate the Lande g-factors associated with these lowest energy multiplets.
(Once you know how to do it for a few cases it should be straight forward for the rest)

$$
\begin{aligned}
& d^{n} \\
& n=1:{ }^{2} D_{3 / 2} \\
& n=3:{ }^{4} F_{3 / 2} \\
& n=4:{ }^{5} D_{0} \\
& n=7:{ }^{4} F_{9 / 2} \\
& f^{n} \\
& n=1:{ }^{2} F_{5 / 2} \\
& n=3:{ }^{4} L=6_{9 / 2} \\
& n=7:{ }^{8} S_{7 / 2} \\
& f^{n}
\end{aligned}
$$

Practice how to calculate the Lande g-factor and effective moment for these multiplets.

3.3

The wave function of the hydrogen atom in its ground state (1s) is $\psi=\left(\pi a^{3}\right)^{-1 / 2} \exp (-r / a)$. Here a is the Bohr radius. Show that for this state $\left\langle r^{2}\right\rangle=3 a^{2}$ and calculate the diamagnetic susceptibility for 1 mole of atomic hydrogen. The correct answer is $-2.36 \times 10^{-6} \mathrm{~cm}^{3} /$ mole .
$\psi_{1 s}=\frac{1}{\left(\pi a^{3}\right)^{\frac{1}{2}}} e^{-r^{\prime} a}$
$<r^{2}>=\int \psi_{1 s}^{*} r^{2} \psi_{1 s} d \vec{r}=\frac{4 \pi}{\pi a^{3}} \int_{0}^{\infty} e^{-2 r / a} r^{2} r^{2} d r=\frac{a^{2}}{8} \int_{0}^{\infty} e^{-x} x^{4} d x=\frac{a^{2}}{8} 4!=3 a^{2}$
In the above derivation we substituted $\frac{2 r}{a}=x$.
The diamagnetic susceptibility for Avogadro's number of atoms is given by
$\chi_{d i a}=-N_{A} \frac{e^{2}}{6 m c^{2}}<r^{2}>=-N_{A} \frac{e^{2} 3 a^{2}}{6 m c^{2}}=N_{A} \frac{e^{2} / 2 a}{m c^{2}} a^{3}$
Now use: $\frac{\frac{\theta}{}_{2}^{2 a}}{2 \alpha}=13.6 \mathrm{eV} ; \mathrm{mc}^{2}=0.522 \mathrm{MeV} ; a=5.29 \times 10^{-9} \mathrm{~cm}_{;} N_{A}=6.022 \times 10^{23} / \mathrm{mole}$
$X_{\text {dia }}=-2.3 \times 10^{-6} \mathrm{~cm}^{3} /$ mole

3.4

For the multiplet (L, S, J)
Show that the average magnetization M for N atoms the presence of an external uniform magnetic field B along the z direction is given by

$$
M=N g_{J} \mu_{E} J B_{J}(x) ; x=g_{J} \mu_{E} J B / k_{B} T
$$

Where the Brillouin function $B_{I}(x)=\frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{(2 J+1) x}{2 J}\right)-\frac{1}{2 I} \operatorname{coth}\left(\frac{x}{2 I}\right)$

For a general state $/ m_{j}$ the energy in the presence of a magnetic field and the magnetic moment are given by
$E\left(J m_{J}\right)=\mu_{B} g_{I} m_{J} B ; \mu\left(J m_{J}\right)=-\mu_{B} g_{J} m_{J}$
Therefore at a temperature T , the average magnetic moment of one atom can be obtained by using Boltzmann distribution.
$<M>=\frac{-\sum_{m_{j}=-J}^{m j=+j} \mu_{B} g_{J} m_{J} e^{-\mu B g m_{j} B / k B T}}{\sum_{m j=-j}^{m_{j}=+j} e^{-\mu g J_{j} B / k E T}}$
Put $\frac{\mu_{B G J}}{k_{B} T}=y$. Then the average magnetization is given by
$<M>=-\mu_{B} g_{J} \frac{\sum_{m_{j}=-j}^{m_{j}=+m_{j}} e^{-y m_{j}}}{\sum_{m_{j}=-j}^{m_{j}=+j} e^{-y m_{j}}}=\mu_{D} g_{J} \frac{d}{d y} \ln \sum_{m_{j}=-j}^{m_{j}=+j} e^{-y m_{j}}=\mu_{B} g_{J} \frac{d}{d y} \ln S$
$S=\sum_{m_{j}=-I}^{m_{J}=+I} e^{-y m_{J}}=\frac{e^{y y}\left(1-e^{-(2 J+1) y}\right)}{\left(1-e^{-y}\right)}=\frac{\left[e^{\left(J+\frac{1}{2}\right) y}-e^{-\left(J+\frac{1}{2}\right) y}\right]}{\left[e^{x / 2}-e^{-y / 2}\right]}$
$\frac{d}{d y} S=\frac{2 J+1}{2} \operatorname{coth}(2 J+1) \frac{y}{2}-\frac{1}{2} \operatorname{coth} \frac{y}{2}$
Substituting for y we get for N atomic magnets
$<M>=N \mu_{B} g_{J} J\left[\frac{(2 J+1)}{2 J} \operatorname{coth} \frac{(2 J+1) \mu_{B} g_{J} B}{2 k_{B} T}-\frac{1}{2 J} \operatorname{coth} \frac{\mu_{B} g_{J} B}{2 k_{B} T}\right]$
In Kittel's book he defines a quantity $\mu \equiv \mu_{B} g_{\text {}}$. If we define a dimensionless quantity x $x=\frac{\mu_{B} g_{j} / B}{k_{B} T}=\frac{\mu J B}{k_{B} T}$
Then we get the average magnetic moment in the form of Brillouin function, $B_{l}(x)$.

$$
\begin{aligned}
& \left\langle M>=N_{\mu_{B}} g_{J} B_{J}(x)\right. \\
& B_{J}(x)=\frac{(2 J+1)}{2 J} \operatorname{coth} \frac{(2 J+1) x}{2 J}-\frac{1}{2 J} \operatorname{coth} \frac{x}{2 J}
\end{aligned}
$$

