Phy 491
HW\#5-Solutions
October 7-14, 2011
5.1
(i) BRAVAIS $\quad \vec{a}_{1}=a(1,0,0) ; \vec{a}_{2}=a\left(\frac{1}{2}, \frac{1}{2}, 0\right) ; \vec{a}_{3}=a(0,0,1)$
(ii) NON-BRAVAIS, 3 Atom basis

The primitive lattice vectors are: $\vec{a}_{1}=a(1,0,0) ; \vec{a}_{2}=a(0,1,0) ; \vec{a}_{3}=a(0,0,1)$
The basis vectors are: $\vec{r}_{1}=a(0,0,0) ; \vec{r}_{2}=a\left(\frac{1}{2}, 0, \frac{1}{2}\right) ; \vec{r}_{3}=a\left(0, \frac{1}{2}, \frac{1}{2}\right)$
(iii) NON-BRAVAIS, 4 Atom basis

The primitive lattice vectors are: $\vec{a}_{1}=a(1,0,0) ; \vec{a}_{2}=a(0,1,0) ; \vec{a}_{3}=a(0,0,1)$
The basis vectors are: $\vec{r}_{1}=a(0,0,0) ; \vec{r}_{2}=a\left(\frac{1}{2}, 0,0\right) ; \vec{r}_{3}=a\left(0, \frac{1}{2}, 0\right) ; \vec{r}_{4}=a\left(0,0, \frac{1}{2}\right)$
5.2
(a) $\mathrm{CsCl}:$ Simple Cubic,

$$
\mathrm{n}=\# \text { of atoms/unit cell volume }=\frac{2}{a^{3}}
$$

(b) NaCl : Face Centered Cubic (FCC), $\vec{r}_{N a}=a(0,0,0) ; \vec{r}_{C l}=a\left(\frac{1}{2}, 0,0\right)$

$$
\mathrm{n}=\frac{2}{a^{3} / 4}=\frac{8}{a^{3}}
$$

(c) CaF_{2} : Face Centered Cubic (FCC), $\vec{r}_{C a}=a(0,0,0) ; \vec{r}_{F 1}=a\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) ; \vec{r}_{F 2}=a\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right)$

$$
\mathrm{n}=\frac{3}{a^{3} / 4}=\frac{12}{a^{3}}
$$

(d) BaTiO_{3}; Simple Cubic,

$$
\begin{aligned}
& \vec{r}_{B a}=a(0,0,0) ; \vec{r}_{T i}=a\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) ; \vec{r}_{O 1}=a\left(\frac{1}{2}, \frac{1}{2}, 0\right) ; \vec{r}_{O 2}=a\left(0, \frac{1}{2}, \frac{1}{2}\right) ; \vec{r}_{O 3}=a\left(\frac{1}{2}, 0, \frac{1}{2}\right) \\
& \mathrm{n}=\frac{5}{a^{3}}
\end{aligned}
$$

5.3
$\vec{b}_{2} \bullet \vec{a}_{1}=0 \Rightarrow \vec{b}_{1}=\beta \hat{y}$
$\vec{b}_{2} \bullet \vec{a}_{2}=2 \pi \Rightarrow \beta \hat{y} \bullet(a / 2 \hat{x}+a \sqrt{3} / 2 \hat{y})=\beta a \sqrt{3} / 2=2 \pi, \beta=\frac{4 \pi}{a \sqrt{3}}$
$\vec{b}_{2}=\frac{4 \pi}{a \sqrt{3}}(0,1)$
$\overrightarrow{b_{1}} \bullet \vec{a}_{2}=0 \Rightarrow \vec{b}_{1}=\gamma(\sqrt{3} / 2 \hat{x}-1 / 2 \hat{y})$
$\vec{b}_{1} \bullet \vec{a}_{1}=2 \pi \Rightarrow \gamma a \sqrt{3} / 2=2 \pi ; \gamma=\frac{4 \pi}{a \sqrt{3}}=\beta$
$\vec{b}_{1}=\frac{4 \pi}{a \sqrt{3}}\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

In the reciprocal space the two primitive vectors are \vec{b}_{1} and \vec{b}_{2} which generate A 2 d hexagonal lattice (net) with the sides of the triangle $\beta=\frac{4 \pi}{a \sqrt{3}}$

The area of the $1^{\text {st }} \mathrm{BZ}$ is the area of the primitive cell in the reciprocal lattice space. This is given by $A_{B Z}=\beta^{2} \frac{\sqrt{3}}{2}=\frac{8 \pi^{2}}{a^{2} \sqrt{3}}$. The area of the primitive cell in the direct lattice space is $A=a^{2} \frac{\sqrt{3}}{2}$. Thus we find $A_{B Z}=\frac{(2 \pi)^{2}}{A}$.

