PHY 491, Homework 8
November 11, 2011

Problem 8.1

Problem \#2, Chapter 3
Compares the subtle difference between different types of crystal structures for Lennard Jones solids.

$$
\begin{gathered}
E_{c o h}=4 \varepsilon\left(\frac{C_{2}^{2}}{8 C_{1}}\right) \\
C_{1}=\sum_{j} \frac{1}{p_{i j}^{12}}=12.13188(F C C) ; 9.11418(B C C) \\
C_{2}=\sum_{j} \frac{1}{p_{i j}^{6}}=14.45392(F C C) ; 12.2533(B C C) \\
E_{c o h}=4 \varepsilon(2.1525): F C C \\
E_{c o h}=4 \varepsilon(2.0592): B C C \\
\frac{\left(E_{\text {coh }}\right)_{F C C}}{\left(E_{c o h}\right)_{F C C}}=\frac{2.0592}{2.1525}=0.957
\end{gathered}
$$

Problem 8.2

Problem \#3, Chapter 3

$$
\begin{aligned}
\frac{E_{c o h}}{\text { mole }}= & 4 \varepsilon(2.1525) N_{A}=4 * 50 * 10^{-16} \operatorname{erg} * \frac{10^{-7} J}{\operatorname{srg}} * 6.022 * 10^{23} \\
& \frac{E_{c o h}}{\text { mole }}=2.592 \mathrm{~kJ}
\end{aligned}
$$

Problem 8.3

Problem \#5, Chapter 3
Nice problem involving Madelung energy and repulsive energy for a 1-dimensional ionic crystal

$$
\begin{aligned}
& U=N\left[\frac{z A}{R^{n}}-\frac{\alpha q^{2}}{R}\right] ; \alpha=2 \ln 2 ; z=2 \\
& \frac{d U}{d R}=0 ; R_{0}^{n-1}=\frac{2 n A}{\alpha q^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& U\left(R_{0}\right)=\frac{N}{R_{0}}\left[\frac{2 A}{R_{0}^{n-1}}-\alpha q^{2}\right] \\
& U\left(R_{0}\right)=-\frac{2 N \ln 2 q^{2}}{R_{0}}\left[1-\frac{1}{n}\right]
\end{aligned}
$$

Now we can expand $U(R)$ near $R=R_{0}$. The linear terms vanish because the first derivative of $U(R)$ vanishes at R_{0}. The quadratic term is the first correction.

$$
\begin{aligned}
& U(R)=U\left(R_{0}(1+\delta)\right)=N\left[\frac{z A}{R_{0}{ }^{n}(1+\delta)^{n}}-\frac{\alpha q^{2}}{R_{0}(1+\delta)}\right] \\
& U(R)=U\left(R_{0}(1+\delta)\right)=U\left(R_{0}\right)+\frac{1}{2} N \delta^{2} \frac{(n-1) q^{2} 2 \ln 2}{R_{0}} \\
& \frac{U(R)}{2 N}=\frac{U\left(R_{0}\right)}{2 N}+\frac{1}{2} C \delta^{-2} ; C=\frac{(n-1) q^{2} \ln 2}{R_{0}}
\end{aligned}
$$

Problem 8.4

Problem \#7, Chapter 3
Nice problem about ionic solids and the stable ionic configuration.
We have to first calculate the Madelung energy when the charges are
± 1 (in units of electron charge) and when ± 2. Here we will calculate energy/molecule, U / N, because we will correct for ionization energy and electron affinity for a molecule.

Madelung energy (ignore short range repulsion which is about 10% correction).
We will write the charge $\mathrm{q}=e \varepsilon ; \varepsilon=1,2$
FCC lattice

$$
\begin{gather*}
\frac{U}{N}=-\frac{\alpha q^{2}}{R_{0}}=-\frac{1.747565}{2.76}\left(\frac{e^{2}}{1 A^{\circ}}\right) \epsilon^{2} ; \epsilon=1,2 \\
\frac{U}{N}=-8.61 \mathrm{eV} ; \epsilon=1 \tag{1}\\
\frac{U}{N}=--34.44 \mathrm{eV} ; \epsilon=2 \tag{2}
\end{gather*}
$$

Clearly the $+2 .-2$ charge state has lower (more attractive and hence large cohesive energy) energy. But we have to compare this energy with that for isolated neutral Ba and O atoms.

Cohesive energy calculation
Charge states are $+1,-1(\varepsilon=1)$

$$
\begin{align*}
& B a+5.19 \mathrm{eV}=B a^{1+}+e \\
& O+e=O^{1-}+1.5 \mathrm{eV} \\
& B a+O=B a^{1+}+O^{1-}+(1.5-5.9) \mathrm{eV} \tag{3}
\end{align*}
$$

Using Eq. 1 and Eq. 3, the cohesive energy of $\mathrm{Ba}^{1+} \mathrm{O}^{1-}$ is given by

$$
E_{\text {coh }}=8.61-4.1=4.51 \mathrm{eV}
$$

Now consider the charge $+2,-2$

$$
\begin{aligned}
& O+2 e=O^{2-}+(1.5-9.0) e V \\
& B a+(5.19+9.96) e V=B a^{2+}+2 e
\end{aligned}
$$

Putting these two equations together

$$
\begin{equation*}
\mathrm{Ba}+\mathrm{O}=\mathrm{Ba}^{2+}+\mathrm{O}^{2-}-22.65 \mathrm{eV} \tag{4}
\end{equation*}
$$

Using Eq. 2 and Eq. 4 , the cohesive energy of $\mathrm{Ba}^{2+} \mathrm{O}^{2-}$ is given by

$$
E_{\text {coh }}=34 \cdot 44-22.65=11.79 \mathrm{eV}
$$

Cohesive energy of $\mathrm{Ba}^{2+} \mathrm{O}^{2-}$ is larger than that of $\mathrm{Ba}^{1+} \mathrm{O}^{1-}$. So the stable compound is indeed $\mathrm{Ba}^{2+} \mathrm{O}^{2-}$.

