PHY 491, Homework 9
November 21, 2011
Problem 9.1
Show that for a diatomic chain (two masses M1 and M2 but interacting with same force constant C- Eq. 18, Chapter 4, of Kittel) the ratio of the displacements of the two atoms u/v for K=0 optic mode is given by


u/v=-M2/M1
(Note: This is Eq. 26 of Chapter 4)


From the 1st of Eq. 20 (Chapter 4) we get
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(1)
For the optic mode with K=0, we have: 
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(2)
Therefore for this mode substitution (2) for ω in (1) we get
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Problem 9.2
Problem #3, Chapter 4
This is similar to Problem 9.1 but for zone boundary modes (K=π/a).
There are two zone boundary modes : ω12= 2C/M1 and ω22= 2C/M2. Assume M1>M2. Therefore ω1<ω2.
For ω1  use the 2nd of Eq. 20 i.e.
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Which for ω= ω1 and K=π/a gives 
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That is only the mass M1 is moving and the mass M2 is at rest. Similarly for ω= ω2 use the 1st of Eq. 20 and show that
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That is only the mass M2 is moving and the mass M1 is at rest.

Problem 9.3
Problem #5, Chapter 4
This is similar to 2 atoms/unit cell. But in this case the two masses are same but the force constants C alternate between C1 and C2. A simple model for diatomic molecular solid.
The equations of motion for two types of atoms (right force constant C1 and left force constant C2) and vice versa are .
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Try periodic solutions of the form:
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This leads to the eigen value equation:
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The two solutions are:
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Choose: C1=C and C2=10C. The modes at K=o and K=π/a are:

K=0; one zero frequency mode (Goldstone mode) and the other the highest frequency mode.
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K= π/a

[image: image13.png]J2C/M \J20C/M




Problem 9.4

Problem #1, Chapter 5

Density of vibrational states in 1-dimension.
From Eq. 15, Chapter 5 we get
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For 1d chain we have
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Using ω(K) = ω and putting all equations together we get
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Problem 9.5
Problem #4, Chapter 5
Heat capacity of a 2-dimensional solid in Debye approximation.
Thermal energy associated with phonons is given by
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Where the density of modes D(ω) depends on the type (acoustic or optic, longitudinal or transverse). For the 2-dimensional lattice and one type of mode we have



[image: image19.png]2

(zLT:) 2mK dm(I:)/dK;

w(K) =w






[image: image20.png]w(K) = vK






[image: image21.png]



Assuming that the one longitudinal and two transverse modes have the same velocity we have
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The Debye frequency ωD is obtained by using
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We can calculate U using the following scaling:
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For T<<ϴD i.e. temperature much smaller than the Debye temperature, xD=(
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Using this equation for the thermal energy associated with 2-dimensional phonons we get the heat capacity 
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.
The T2 law in 2-dimension.
