CRYSTALLINE SOLIDS IN 3D
 Andrew Baczewski
 PHY 49I, October 7th, 201।

OVERVIEW

- First - are there any questions from the previous lecture?
-Today, we will answer the following questions:
-Why should we care about crystal structure?
- How many Bravais lattices are there in 3D?
- How do we describe them mathematically?
-What are some common examples of these structures?
-What are some not-so common examples?

REVIEW OF 2D BRAVAIS LATTICES

- In 2D, we saw that there are $\mathbf{5}$ distinct Bravais lattices.
- Characterized by $\mathbf{2}$ Iattice vectors (2 magnitudes + I angle between vectors)

- | = oblique
- 2 = rectangular
- 3 = centered rectangular
- 4 = triangular net/hexagonal
- 5 = square net
- Recall that must assign a basis to the lattice to describe a real solid.

3D BRAVAIS LATTICES

- In 3D, lattices are characterized by 3 lattice vectors (3 magnitudes, 3 angles)

-There are 2 common conventions for labeling lattice vectors:
- Kittel (your book) uses:
- Vectors: ($\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$)
- Angles: $\left(\boldsymbol{\alpha}_{12}, \boldsymbol{\alpha}_{23}, \boldsymbol{\alpha}_{31}\right)$
- $\boldsymbol{\alpha}_{12}$ is the angle $b / w \mathbf{a}_{1}$ and \mathbf{a}_{2}
- Perhaps more common:
- Vectors: ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
- Angles: ($\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$)
- $\boldsymbol{\alpha}$ is the angle $b / w \mathbf{b}$ and \mathbf{c}
- We find that there are $\mathbf{I} \mathbf{4}$ distinct Bravais lattices.
-These 14 can be divided further into 7 lattice classes

3D BRAVAIS LATTICES (CONT.)

- 7 Iattice classes, 14 distinct Bravais lattices
- You will also see 'volume centered' structures referred to as 'body centered'
- There is an error in this table: trigonal refers to a crystal system, NOT a Bravais lattice. The Bravais lattice is actually called rhombohedral.
- For now, you will be most interested in the cubic lattice classes
- If you continue in condensed matter physics, you will probably encounter some of the more 'exotic' structures in your research

CUBIC BRAVAIS LATTICES

Left to right: simple, body/volume centered, face centered

- You will often see the abbreviations sc, bcc, and fcc for these lattices.
- Assigning lattice vectors is, as in 2D, non-unique, but not all choices are equally useful.
- Let's consider a bcc example.

BODY CENTERED CUBIC EXAMPLE

- We can conceptualize the bcc structure as $\mathbf{2}$

interpenetrating sc structures

- Vertices of a cube in one lattice lie at the center of the other
- Consider 2 choices of lattice vectors:
- Origin at an \boldsymbol{A} atom:
- 2 vectors to other \boldsymbol{A} atoms, I to a \mathbf{B} atom
- All 3 vectors to \boldsymbol{B} atoms
- Let's codify this mathematically

BODY CENTERED CUBIC EXAMPLE (CONT).

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathrm{ax} \\
& \mathbf{a}_{2}=\mathrm{a}
\end{aligned}
$$

$$
\mathbf{a}_{3}=\mathrm{a} / 2(\mathbf{x}+\mathbf{y}+\mathbf{z})
$$

$$
\begin{aligned}
& \mathbf{a}_{1}=a / 2(\mathbf{y}+\mathbf{z}-\mathbf{x}) \\
& \mathbf{a}_{2}=a / 2(\mathbf{z}+\mathbf{x}-\mathbf{y}) \\
& \mathbf{a}_{3}=\mathrm{a} / 2(\mathbf{x}+\mathbf{y}-\mathbf{z})
\end{aligned}
$$

PRIMITIVE CELLS

- The unit cell is a volume that can fill all of space, without gaps, when translated by lattice vectors
- The choice of unit cell is also non-unique, so it is convenient to have a standard for assigning them.
- This is called the Wigner-Seitz cell, it is an example of a primitive cell
- A primitive cell is the minimum volume of space the can be used to characterize a Bravais lattice that contains exactly I Iattice point.
-This is, of course, also non-unique:
- Notice that many of the choices have symmetries that differ from the underlying lattice...

PRIMITIVE CELLS (CONT.)

- Things can look even weirder in 3D...
- The unshaded area is the conventional fcc unit cell.
- The shaded area is one choice of the primitive cell
- This may seem counter-intuitive: parallelepiped has 8 vertices, each of which 'contains' I/8 of a lattice point - 8 x I/8 = I point per cell
- Parallelepiped does NOT have the cubic
symmetry of the original Bravais lattice...

WIGNER-SEITZ CELL

- We want a convenient standard for constructing primitive cells that preserve the symmetry of the original Bravais lattice.
- Along came these 2 gentlemen...
- Eugene Wigner
- Hungarian theoretical physicist
- Nobel laureate (I963)
- Fun fact: Paul Dirac's brother-in-law

- Frederick Seitz
- Wigner's student
- Started big lab at UIUC
- Fun facts:
- Global warming skeptic (before it was cool)

WIGNER-SEITZ CELL (CONT.)

-For a given lattice point, the Wigner-Seitz cell is the volume of space that is closer to that point than any other in the Iattice

- Algorithm for construction
- Choose a lattice point
- Find its nearest neighbors
- Draw a line from the point to its neighbors
- Bisect this line with a plane
- Planes bound the Wigner-Seitz cell
- We will find this same construction useful when we learn about Brillouin Zones

(Left) bcc Wigner-Seitz cell
(Right) fcc Wigner-Seitz cell
- If you ever wind up working in applied math/computer science/topology, a generalization of this concept is frequently found (Voronoi polyhedra) that actually goes all the way back to Descartes!

UNIT CELLVOLUME

-The volume of the unit cell, when occupied by a basis of atoms, will have some bearing upon the physical properties of the crystal.

- The volume of a conventional, cubic unit cell is simply $\left|\mathbf{a}_{1}\right|^{3}=\left|\mathbf{a}_{2}\right|^{3}=\left|\mathbf{a}_{3}\right|^{3}$
- More generally, you can use the lattice vectors to calculate the volume of the unit cell:

$$
\left|\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)\right|=\left|\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)\right|=\left|\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)\right|
$$

- So far we have only considered the conventional unit cell...
-What about the primitive unit cell?
- Conventional unit cell for fcc and bcc have 4 and 2 atoms per cell, respectively.
-What is the volume of the primitive cells for fcc and bcc structures?

EXEMPLARY CRYSTAL STRUCTURES

- Remember, to create an actual crystal, we need to assign a basis of atoms to the Bravais lattice.
- What are some of the more common crystal structures that arise in solid state physics?
- CsCl: simple cubic with a basis of 2 atoms
- $\mathbf{N a C l}$ (halite, rock salt): fcc lattice with a basis of 2 atoms
- Diamond: fcc lattice with a basis of 2 atoms of the same species
- ZnS (zincblende): fcc lattice with a basis of 2 atoms of different species
- Hexagonal close packed (HCP): simple hexagonal lattice with a two atom basis
- Let's look at these individually, in more detail..

CESIUM CHLORIDE

- Simple cubic lattice with a basis of 2 atoms:
- Green sites are Chlorine
- Blue sites are Cesium
- Simple choice of basis: $(0,0,0)$ and $(a / 2, a / 2, a / 2)$
- Each site has 8 nearest neighbors of the opposite species.
- Alkali halide, so bonding is similar to NaCl , but here the atoms have very different sizes...

SODIUM CHLORIDE

- Face centered cubic lattice with a basis of 2 atoms:
- Green sites are Chlorine
- Red sites are Sodium
- Same choice of basis: ($0,0,0$) and ($\mathrm{a} / 2, \mathrm{a} / 2, \mathrm{a} / 2$)
- Centering is different here!
- Each site has $\mathbf{6}$ nearest neighbors of the opposite species.
- Again an alkali halide, so bonding will be similar, but the atoms have similar 'sizes', so the crystal structure is different.

DIAMOND

- Face centered cubic lattice with a basis of 2 atoms of the same species (Carbon for "diamond" diamond)
- New choice of basis: $(0,0,0)$ and $(a / 4, a / 4, a / 4)$
- Centering is different here!
- Each site has 4 nearest neighbors of the same species.
- Diamond structures typically arise in covalently bonded crystals
- Of great technological importance:
- Silicon solidifies in the diamond crystal structure

ZINCBLENDE

- Face centered cubic lattice with a basis of 2 atoms of the different species (Zinc and Sulfur)
- Same choice of basis: ($0,0,0$) and (a/4,a/4,a/4)
- Each site has 4 nearest neighbors of the opposite species.
- Zincblende structures also arise in covalently bonded crystals
- Also of great technological importance:
- Commonly arises in III-V semiconductors
- GaAs is a good example

HEXAGONAL CLOSE PACKED (HCP)

- Simple hexagonal lattice with a basis of 2 atoms
- Think of this as stacking layers of 2D triangular nets
- Basis: ($0,0,0$) and (a/3,a/3,a/2)
- The name comes from packing hard spheres (bottom)
- 30 elemental solids crystallize in HCP

- (Mg and Be are the most common)
- Many different types of close-packing arrangements - Think of it like close-packing 2D layers...
- HCP is not Bravais lattice, but FCC close-packing is...

MODERN APPLICATIONS

-The topological insulating state is a topic of considerable contemporary interest.

- In a conventional band insulator, the electrons in a crystalline solid are immobile throughout the entire crystal (i.e., even at the surface)
- In a topological insulator, symmetries of the underlying crystal, along with spin-orbit coupling effects give rise to materials where the bulk insulates, but the surfaces have electronic states that can participate in conduction.
-These surface states are very 'exotic':
- Electron spin is locked perpendicular to its (quasi)-momentum
- Scattering channels are suppressed by symmetry, so the conduction is ballistic (free of scattering)
- Anomalous magnetoelectric effect (non-Maxwellian electrodynamics)
- Some of the associated crystal structures are quite complex...

MODERN APPLICATIONS

- On the left is $\mathrm{Bi}_{2} \mathrm{Se}_{3}$, a confirmed topological insulator
- Rhombohedral Bravais lattice
- On the right is $\mathrm{Tl}_{2} \mathrm{Hg}_{3} \mathrm{Te}_{4}$, a potential topological insulator
- Monoclinic Bravais lattice
- I am studying the latter, trying to figure out whether or not this state will arise in this particular material

CONCLUSIONS

- Take home points from today's lecture:
- There are $\mathbf{1 4}$ distinct Bravais lattices in 3D.
- Each lattice is characterized by 3 Iattice vectors (3 magnitudes, 3 angles)
- Primitive cell can be constructed using Wigner-Seitz method
- In Monday's lecture, we will discuss:
- What type of experimental probes exist for characterizing crystalline solids?
- What is a reciprocal Iattice and what is its relationship to the lattices we have already discussed?
-What is a Brillouin Zone, and why is it theoretically useful?
-Any questions?
- Before leaving, take out a piece of paper - here is a 5 minute quiz.

QUIZ

- Consider the simple cubic, face centered cubic, and body centered cubic lattices.

- Assuming each lattice site is occupied by a basis consisting of a single sphere at $(0,0,0)$, with a radius such that it is touching its nearest neighbor, what percentage of the conventional unit cell is filled by spheres?

