PROBING CRYSTAL STRUCTURE
 Andrew Baczewski
 PHY 49। October IOth, 2011

OVERVIEW

- First - we'll briefly discuss Friday's quiz.
-Today, we will answer the following questions:
-How do we experimentally probe crystal structure?
-What is a 'reciprocal lattice??
- What does the Bragg condition for diffraction have to do with the reciprocal lattice?

THE SCATTERING PARADIGM

- One of the most vital experimental philosophies, transcending all fields of physics, can be (crudely) summarized as follows:

There is much knowledge to be gained from throwing known objects at unknown objects and observing what happens

- Generally, the length scale of the known probe sets the maximum length scale that can be resolved in the unknown.
- In solids, the interatomic spacing is on the order of Angstroms (10^{-10} meters).
-What can we use to resolve details on this length scale?

PHOTONS

- Wavelength of visible light ~IOOs of nm
- About 3 orders of magnitude larger than would be necessary to resolve crystalline structure.
- X-rays have a sufficiently short wavelength
- What are the energies associated with photons of these wavelengths?

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \mathrm{~nm}}{\lambda}
$$

$\lambda=500 \mathrm{~nm} \rightarrow E=\frac{1240 \mathrm{eV} \mathrm{nm}}{500 \mathrm{~nm}}=2.48 \mathrm{eV}$

$$
\lambda=0.1 \mathrm{~nm} \rightarrow E=\frac{1240 \mathrm{eV} \mathrm{~nm}}{0.1 \mathrm{~nm}}=12.4 \mathrm{keV}
$$

ELECTRONS

- Massive particles have a de Broglie wavelength that scales inversely with their momentum*

$$
\lambda=\frac{h}{p}, \quad E=\frac{p^{2}}{2 m} \rightarrow \lambda=\frac{h}{\sqrt{2 m E}}
$$

-What is the energy of an electron with a de Broglie wavelength of I Angstrom?

$$
E=\frac{h^{2}}{2 m \lambda^{2}}=\frac{(h c)^{2}}{2 m c^{2} \lambda^{2}}=\frac{(1240 \mathrm{eV} \mathrm{~nm})^{2}}{2 \times 511 \mathrm{keV} \times(0.1 \mathrm{~nm})^{2}}=150 \mathrm{eV}
$$

- Note: Energy scales as the inverse square of wavelength
-To double your resolution, you need to quadruple your energy...
- We can reduce the energy even further if we increase the mass of the particle...

NEUTRONS

- Rest mass of a neutron is about $939 \mathrm{MeV} / \mathrm{c}^{2}$ - I837 times larger than an electron!

-The energy of a I Angstrom neutron is thus reduced by a factor of 1837 ...

$$
E_{\text {electron }, 1 \AA}=150 \mathrm{eV} \rightarrow E_{\text {neutron }, 1 \AA}=\frac{E_{\text {electron }, 1 \AA}}{1837}=0.08 \mathrm{eV}
$$

- Room temperature is about 0.026 eV ...

$$
\lambda_{\text {neutron, room temp }}=\frac{(h c)}{\sqrt{2 m c^{2} E}}=\frac{1240 \mathrm{eV} \mathrm{~nm}}{\sqrt{2 * 939 \mathrm{MeV} * 0.026 \mathrm{eV}}}=0.177 \mathrm{~nm}=1.77 \AA
$$

-Relatively cold neutrons have a de Broglie wavelength short enough to resolve crystalline structure!

WHATTO USE?

- We typically use photons, electrons, and neutrons as probes of crystal structure, as they give us both complementary and corroborating information.
- X-rays interact with electronic polarizability
- Electrons interact with electronic/nuclear charge distribution
- Neutrons interact with nuclei directly, or with magnetic moments
- Both elastic and inelastic scattering experiments are used.
- Elastic scattering gives us information about static structure
- Inelastic scattering gives us information about dynamics (excitations) of the crystal
-Today, we will primarily be discussing elastic scattering techniques, in the context of X-ray scattering. The analysis is easily transferrable to other types of scattering studies, though.
- Before we start into the mathematics, let us first discuss the history and state-of-the-art for each of these techniques.

X-RAY METHODS

- Only a few years after Roentgen received the first Nobel prize for his discovery of X-rays (1901), the father-son physics duo of Bragg and Bragg pioneered X -ray crystallography techniques
- Both received the Nobel Prize in 1915. Only a year afterVon Laue, who also received a Nobel Prize for work in X-ray diffraction

- Fun facts:
- Von Laue and Franck had their Nobel prizes dissolved in aqua regia during WWII. Left on shelf at Niels Bohr Institute.
- The younger Bragg helped Watson and Crick resolve the double helix structure of DNA

BRAGG'S LAW

- X-ray diffraction can be understood in terms of a relatively simple construction.
- Crystal represented by planes of point-like atoms separated by a distance 'd'

- X-ray beam characterized by wavelength $(\boldsymbol{\lambda})$ and angle of incidence $(\boldsymbol{\theta})$.

-When 2 rays are scattered from different planes
 and experience constructive interference, a diffraction peak will be observed.
- This condition can be expressed as: $2 d \sin \theta=n \lambda$
- ' n ' is the index of the diffraction peak.

DERIVING BRAGG'S LAW

- Heuristic arguments aside, we will now construct a more rigorous approach to theoretically characterizing scattering from crystals.
- To do so, we will first develop the notion of a reciprocal Iattice.
- Fundamentally, our probe is interacting with either a charge density, or maybe even a spin density, that has the same periodicity as the lattice:

$$
n(\overrightarrow{\mathbf{r}})=n(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{T}}), \quad \overrightarrow{\mathbf{T}} \in\left\{n_{1} \overrightarrow{\mathbf{a}}_{1}+n_{2} \overrightarrow{\mathbf{a}}_{2}+n_{3} \overrightarrow{\mathbf{a}}_{3}\right\} \quad n_{i} \in \mathbb{Z}
$$

- The nice thing about periodic functions, like this, is that they are representable as a Fourier series:

$$
n(\overrightarrow{\mathbf{r}})=\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{r}}}
$$

- Here, the sum on $\overrightarrow{\mathbf{G}}_{\text {is over all vectors in what is known as the reciprocal lattice to our real lattice }}$

THE RECIPROCAL LATTICE
 $$
n(\overrightarrow{\mathbf{r}})=\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{r}}}
$$

- We can impose strong constraints on the reciprocal lattice vectors based upon certain physical constraints -The quantity we are representing is a real-valued function: $n^{*}(\overrightarrow{\mathbf{r}})=n(\overrightarrow{\mathbf{r}})$
- It has the same periodicity as the lattice: $n(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{T}})=n(\overrightarrow{\mathbf{r}})$

$$
\begin{aligned}
n^{*}(\overrightarrow{\mathbf{r}}) & =\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}}^{*} e^{-i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{r}}}=\sum_{\overrightarrow{\mathbf{G}}} n_{-\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{r}}}=n(\overrightarrow{\mathbf{r}}) \rightarrow n_{\overrightarrow{\mathbf{G}}}^{*}=n_{-\overrightarrow{\mathbf{G}}} \\
n(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{T}}) & =\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{T}})}=\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{r}}}=n(\overrightarrow{\mathbf{r}}) \rightarrow e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{T}}}=1
\end{aligned}
$$

More heuristically: you only need to compute Fourier coefficients for a fraction of the total lattice, and the reciprocal lattice vectors are defined with respect to the real lattice vectors

THE RECIPROCAL LATTICE (CONT.)

$$
n(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{T}})=\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{T}})}=\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{r}}}=n(\overrightarrow{\mathbf{r}}) \rightarrow e^{i \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{T}}}=1
$$

- We can use the above relationship to generate the reciprocal lattice vectors from the real lattice vectors.

$$
\overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{T}}=2 \pi
$$

- For real lattice vectors: $\left\{\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \overrightarrow{\mathbf{a}}_{3}\right\}$ we define 3 reciprocal lattice vectors: $\left\{\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathbf{b}}_{3}\right\}$

$$
\overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{b}}_{j}=2 \pi \delta_{i j}
$$

- These 3 reciprocal lattice vectors span the reciprocal lattice:

$$
\overrightarrow{\mathbf{G}} \in\left\{m_{1} \overrightarrow{\mathbf{b}}_{1}+m_{2} \overrightarrow{\mathbf{b}}_{2}+m_{3} \overrightarrow{\mathbf{b}}_{3}\right\} \quad m_{i} \in \mathbb{Z}
$$

- It is worth noting that the reciprocal lattice vectors have units of inverse length. Why?

THE RECIPROCAL LATTICE (CONT.)

- So how can we use this relation, $\overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{b}}_{j}=2 \pi \delta_{i j}$, to generate reciprocal lattice vectors?
- Life is simple for cubic lattices:

$$
\begin{aligned}
\overrightarrow{\mathbf{a}}_{1}=a \hat{\mathbf{x}} \\
\overrightarrow{\mathbf{a}}_{2}=a \hat{\mathbf{y}} \\
\overrightarrow{\mathbf{a}}_{3}=a \hat{\mathbf{z}}
\end{aligned} \longrightarrow \overrightarrow{\mathbf{b}}_{1}=\frac{2 \pi}{a} \hat{\mathbf{x}} .
$$

-Things can certainly become trickier though...

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}_{1}=a \hat{\mathbf{x}} \\
& \overrightarrow{\mathbf{a}}_{2}=\frac{\sqrt{3}}{2} a \hat{\mathbf{y}}-\frac{1}{2} a \hat{\mathbf{x}} \\
& \overrightarrow{\mathbf{a}}_{3}=a \hat{\mathbf{z}}
\end{aligned}
$$

Solve for the c coefficients $\overrightarrow{\mathbf{b}}_{i}=c_{i, x} \hat{\mathbf{x}}+c_{i, y} \hat{\mathbf{y}}+c_{i, z} \hat{\mathbf{z}}$

THE RECIPROCAL LATTICE (CONT.)

$$
\overrightarrow{\mathbf{a}}_{1}=a \hat{\mathbf{x}}
$$

$$
\overrightarrow{\mathbf{a}}_{2}=\frac{\sqrt{3}}{2} a \hat{\mathbf{y}}-\frac{1}{2} a \hat{\mathbf{x}}
$$

Solve for the c coefficients

$\overrightarrow{\mathbf{b}}_{i}=c_{i, x} \hat{\mathbf{x}}+c_{i, y} \hat{\mathbf{y}}+c_{i, z} \hat{\mathbf{z}}$

$$
\overrightarrow{\mathbf{a}}_{3}=a \hat{\mathbf{z}}
$$

- Again, use $\overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{b}}_{j}=2 \pi \delta_{i j}$. This will give us 9 equations in 9 unknowns.
- $\overrightarrow{\mathbf{b}}_{3}=\frac{2 \pi}{a} \hat{\mathbf{z}}$ should be trivially evident.
- We have to solve a small system for $\overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{b}}_{2}$

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}_{1} \cdot \overrightarrow{\mathbf{b}}_{1}=a c_{1, x}=2 \pi, \quad \overrightarrow{\mathbf{a}}_{1} \cdot \overrightarrow{\mathbf{b}}_{2}=a c_{2, x}=0 \\
& \overrightarrow{\mathbf{a}}_{2} \cdot \overrightarrow{\mathbf{b}}_{1}=-\frac{1}{2} a c_{1, x}+\frac{\sqrt{3}}{2} a c_{1, y}=0, \quad \overrightarrow{\mathbf{a}}_{2} \cdot \overrightarrow{\mathbf{b}}_{2}=-\frac{1}{2} a c_{2, x}+\frac{\sqrt{3}}{2} a c_{2, y}=2 \pi
\end{aligned}
$$

THE RECIPROCAL LATTICE (CONT.)

$$
\begin{array}{ll}
\overrightarrow{\mathbf{a}}_{1}=a \hat{\mathbf{x}} \\
\overrightarrow{\mathbf{a}}_{2}=\frac{\sqrt{3}}{2} a \hat{\mathbf{y}}-\frac{1}{2} a \hat{\mathbf{x}} \longrightarrow \overrightarrow{\mathbf{b}}_{1}=\frac{2 \pi}{a}\left[\hat{\mathbf{x}}+\frac{1}{\sqrt{3}} \hat{\mathbf{y}}\right] \\
\overrightarrow{\mathbf{a}}_{3}=a \hat{\mathbf{z}} & \overrightarrow{\mathbf{b}}_{2}=\frac{4 \pi}{\sqrt{3} a} \hat{\mathbf{y}} \\
\overrightarrow{\mathbf{b}}_{3}=\frac{2 \pi}{a} \hat{\mathbf{z}}
\end{array}
$$

- While this isn't all that difficult, there is a much simpler formula that can be used to generate reciprocal lattice vectors from real lattice vectors:

$$
\overrightarrow{\mathbf{b}}_{i}=2 \pi \frac{\overrightarrow{\mathbf{a}}_{j} \times \overrightarrow{\mathbf{a}}_{k}}{\overrightarrow{\mathbf{a}}_{1} \cdot\left(\overrightarrow{\mathbf{a}}_{2} \times \overrightarrow{\mathbf{a}}_{3}\right)},
$$

($\mathrm{i}, \mathrm{j}, \mathrm{k}$) is a cyclic permutation of $(1,2,3)$

THE RECIPROCAL LATTICE (CONT.)

- Having defined the reciprocal lattice, given a function with the periodicity of the lattice, $n(\overrightarrow{\mathbf{r}})$ how do we calculate the Fourier coefficients, $n_{\overrightarrow{\mathbf{G}}}$?
- Orthogonality: $\frac{1}{V_{\text {unit }}} \int_{\text {unit cell }} d \overrightarrow{\mathbf{r}} e^{i\left(\overrightarrow{\mathbf{G}}-\overrightarrow{\mathbf{G}^{\prime}} \cdot \overrightarrow{\mathbf{r}}\right.}=\delta_{\overrightarrow{\mathbf{G}} \overrightarrow{\mathbf{G}}^{\prime}}$
-We simply calculate the projection of our density onto the \boldsymbol{G} th Fourier component:

$$
\frac{1}{V_{\text {unit }}} \int_{\text {unit cell }} d \overrightarrow{\mathbf{r}} e^{-i \overrightarrow{\mathbf{G}}^{\prime} \cdot \overrightarrow{\mathbf{r}}} n(\overrightarrow{\mathbf{r}})=\frac{1}{V_{\text {unit }}} \int_{\text {unit cell }} d \overrightarrow{\mathbf{r}} e^{i\left(\overrightarrow{\mathbf{G}}-\overrightarrow{\mathbf{G}^{\prime}}\right) \cdot \overrightarrow{\mathbf{r}}} n_{\overrightarrow{\mathbf{G}}}=n_{\overrightarrow{\mathbf{G}^{\prime}}}
$$

BACKTO BRAGG

- To begin formalizing things a bit more rigorously, consider the following setup:
- A beam of x-rays is incident on our crystal with wave-vector: $\overrightarrow{\mathbf{k}}$
-The reflected beam is characterized by a wave-vector: $\overrightarrow{\mathbf{k}^{\prime}}$

$$
|\overrightarrow{\mathbf{k}}|=\left|\overrightarrow{\mathbf{k}^{\prime}}\right|=\frac{2 \pi}{\lambda}
$$

-The difference between these vectors, $\overrightarrow{\mathbf{k}^{\prime}}-\overrightarrow{\mathbf{k}}=\Delta \overrightarrow{\mathbf{K}}$ is deemed the scattering vector

BACKTO BRAGG (CONT.)

- We are interested in the following quantity, the scattering amplitude:

$$
F(\Delta \overrightarrow{\mathbf{K}})=\int d \overrightarrow{\mathbf{r}} n(\overrightarrow{\mathbf{r}}) e^{-i \vec{\Delta} \overrightarrow{\mathbf{K}} \cdot \overrightarrow{\mathbf{r}}}
$$

- This is the Fourier component of the density associated with the scattering vector.
-This quantity is the coefficient, at leading order,
 to what is called a Born series.
$F(\Delta \overrightarrow{\mathbf{K}})=\int d \overrightarrow{\mathbf{r}} \sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} e^{i(\overrightarrow{\mathbf{G}}-\Delta \overrightarrow{\mathbf{K}}) \cdot \overrightarrow{\mathbf{r}}}=\sum_{\overrightarrow{\mathbf{G}}} n_{\overrightarrow{\mathbf{G}}} \int d \overrightarrow{\mathbf{r}} e^{i(\overrightarrow{\mathbf{G}}-\Delta \overrightarrow{\mathbf{K}}) \cdot \overrightarrow{\mathbf{r}}}=V n_{\Delta \overrightarrow{\mathbf{K}}} \delta_{\overrightarrow{\mathbf{G}}, \Delta \overrightarrow{\mathbf{K}}}$
At leading order, we only see scattering if the scattering vector is in the reciprocal lattice

BACKTO BRAGG (CONT.)

- The scattering intensity is simply the square modulus of the scattering amplitude:

$$
F(\Delta \overrightarrow{\mathbf{K}})=V n_{\overrightarrow{\mathbf{G}}} \rightarrow I \sim V^{2}|\overrightarrow{\mathbf{G}}|^{2}
$$

-This is nice, but where do we get: $2 d \sin \theta=n \lambda$?

$$
\overrightarrow{\mathbf{G}}-\Delta \overrightarrow{\mathbf{K}}=0 \rightarrow \overrightarrow{\mathbf{k}^{\prime}}=\overrightarrow{\mathbf{k}}+\overrightarrow{\mathbf{G}} \rightarrow\left|\overrightarrow{\mathbf{k}^{\prime}}\right|^{2}=|\overrightarrow{\mathbf{k}}|^{2}+|\overrightarrow{\mathbf{G}}|^{2}+2 \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{k}}
$$

- By elasticity of the scattering process, we get: $|\overrightarrow{\mathbf{G}}|^{2}+2 \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{k}}=0$
- We can make things prettier by remember that $-\overrightarrow{\mathbf{G}}$ is also in the reciprocal lattice:

$$
|\overrightarrow{\mathbf{G}}|^{2}=2 \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{k}}
$$

BACKTO BRAGG (CONT.)

- You probably still don't think that $|\overrightarrow{\mathbf{G}}|^{2}=2 \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{k}}$ looks much like $2 d \sin \theta=n \lambda$
-Let $\overrightarrow{\mathbf{G}}=h \overrightarrow{\mathbf{b}}_{1}+k \overrightarrow{\mathbf{b}}_{2}+l \overrightarrow{\mathbf{b}}_{3}$, the triplet [hkl] is called a Miller index, and we will learn more about them on Wednesday.
- As it turns out, this vector is perpendicular to the infinite set of parallel planes containing some set of atoms indexed by (hkl). The distance between these planes is then given as:

$$
d(h k l)=\frac{2 \pi}{|\overrightarrow{\mathbf{G}}|}
$$

$$
2 \overrightarrow{\mathbf{G}} \cdot \overrightarrow{\mathbf{k}}=2|\overrightarrow{\mathbf{G}}||\overrightarrow{\mathbf{k}}| \cos \left(\frac{\pi}{2}-\theta\right)=|\overrightarrow{\mathbf{G}}|^{2} \rightarrow \frac{4 \pi}{\lambda} \sin (\theta)=|\overrightarrow{\mathbf{G}}|
$$

-Which can be reduced to: $2 d(h k l) \sin (\theta)=\lambda$

CONCLUSIONS

- Take home messages from today's lecture:
- X-rays, electrons, and neutrons can all be scattered off of crystalline solids to resolve their structure.
- Bragg's law very simply encapsulates the conditions necessary for the observation of a diffraction peak in an elastic scattering experiment.
- We can derive the Bragg condition using the notion of a reciprocal lattice.
- Given real lattice vectors, it is fairly simple to generate reciprocal lattice vectors.
- Diffraction peaks will be observed for scattering vectors that are in the reciprocal lattice.
- On Wednesday's lecture, we will answer the following questions:
- How do we define lattice planes in a crystal, and how are they identified from diffraction data?
- What is a Brillouin zone, and how is it related to the Wigner-Seitz cell?
- How is scattering from a lattice with a nontrivial basis any different from what we have discussed so far?
- What is the Ewald construction, and how does it relate to what we've learned so far?

