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OVERVIEW

•First - we’ll briefly discuss Friday’s quiz.

•Today, we will answer the following questions:
•How do we experimentally probe crystal structure?
•What is a ‘reciprocal lattice’?
•What does the Bragg condition for diffraction have to do with the reciprocal lattice?
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THE SCATTERING PARADIGM

•One of the most vital experimental philosophies, transcending all fields of physics, can be 
(crudely) summarized as follows:

There is much knowledge to be gained from throwing known objects at unknown objects and 
observing what happens

•Generally, the length scale of the known probe sets the maximum length scale that can be 
resolved in the unknown.

•In solids, the interatomic spacing is on the order of Angstroms (10-10 meters).

•What can we use to resolve details on this length scale?
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PHOTONS
•Wavelength of visible light ~100s of nm 
•About 3 orders of magnitude larger than would 
be necessary to resolve crystalline structure.

•X-rays have a sufficiently short wavelength

•What are the energies associated with photons of 
these wavelengths?

E =
hc

�
=

1240 eV nm

�

� = 500 nm ! E =
1240 eV nm

500 nm
= 2.48eV � = 0.1 nm ! E =

1240 eV nm

0.1 nm
= 12.4keV

Trend worth noting:   Energy scales inversely with wavelength
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ELECTRONS
•Massive particles have a de Broglie wavelength that scales inversely with their momentum*

•What is the energy of an electron with a de Broglie wavelength of 1 Angstrom? 

•Note: Energy scales as the inverse square of wavelength

•To double your resolution, you need to quadruple your energy...

•We can reduce the energy even further if we increase the mass of the particle...

� =
h

p
, E =

p2

2m
! � =

hp
2mE

* Note that we are neglecting relativistic effects.  This is acceptable so long as the non-relativistic kinetic energy is much smaller than 
the rest mass of the electron.  This isn’t the case in transmission electron microscopes (TEMs)! 

E =
h2

2m�2
=

(hc)2

2mc2�2
=

(1240 eV nm)2

2⇥ 511 keV⇥ (0.1 nm)2
= 150 eV
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NEUTRONS

•Rest mass of a neutron is about 939 MeV/c2  - 1837 times larger than an electron!

•The energy of a 1 Angstrom neutron is thus reduced by a factor of 1837...

•Room temperature is about 0.026 eV...

•Relatively cold neutrons have a de Broglie wavelength short enough to resolve crystalline structure!

E
electron,1Å

= 150 eV ! E
neutron,1Å

=
E

electron,1Å

1837
= 0.08 eV

�
neutron, room temp

=
(hc)p
2mc2E

=
1240 eV nmp

2 ⇤ 939 MeV ⇤ 0.026 eV
= 0.177 nm = 1.77Å
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WHAT TO USE?
•We typically use photons, electrons, and neutrons as probes of crystal structure, as they give 
us both complementary and corroborating information.
•X-rays interact with electronic polarizability
•Electrons interact with electronic/nuclear charge distribution
•Neutrons interact with nuclei directly, or with magnetic moments

•Both elastic and inelastic scattering experiments are used.  
•Elastic scattering gives us information about static structure 
•Inelastic scattering gives us information about dynamics (excitations) of the crystal

•Today, we will primarily be discussing elastic scattering techniques, in the context of X-ray 
scattering.  The analysis is easily transferrable to other types of scattering studies, though.

•Before we start into the mathematics, let us first discuss the history and state-of-the-art for 
each of these techniques.
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X-RAY METHODS

•Only a few years after Roentgen received the first Nobel prize for 
his discovery of X-rays (1901), the father-son physics duo of Bragg 
and Bragg pioneered X-ray crystallography techniques

•Both received the Nobel Prize in 1915.  Only a year after Von 
Laue, who also received a Nobel Prize for work in X-ray diffraction

•Fun facts:  
•Von Laue and Franck had their Nobel prizes dissolved in aqua 
regia during WWII.  Left on shelf at Niels Bohr Institute.
•The younger Bragg helped Watson and Crick resolve the double 
helix structure of DNA
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BRAGG’S LAW
•X-ray diffraction can be understood in terms of  
a relatively simple construction. 

•Crystal represented by planes of point-like 
atoms separated by a distance ‘d’

•X-ray beam characterized by wavelength (λ) 
and angle of incidence (θ).

•When 2 rays are scattered from different planes 
and experience constructive interference, a 
diffraction peak will be observed.

•This condition can be expressed as:

•‘n’ is the index of the diffraction peak.

2d sin ✓ = n�
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DERIVING BRAGG’S LAW
•Heuristic arguments aside, we will now construct a more rigorous approach to theoretically 
characterizing scattering from crystals.

•To do so, we will first develop the notion of a reciprocal lattice.

•Fundamentally, our probe is interacting with either a charge density, or maybe even a spin density, 
that has the same periodicity as the lattice:

•The nice thing about periodic functions, like this, is that they are representable as a Fourier series:

•Here, the sum on    is over all vectors in what is known as the reciprocal lattice to our real lattice

n(~r) = n(~r+ ~T), ~T 2 {n1~a1 + n2~a2 + n3~a3}

n(~r) =
X

~G

n~Gei
~G·~r

~G

ni 2 Z
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THE RECIPROCAL LATTICE

•We can impose strong constraints on the reciprocal lattice vectors based upon certain physical constraints
•The quantity we are representing is a real-valued function: 
•It has the same periodicity as the lattice: 

n(~r) =
X

~G

n~Gei
~G·~r

n⇤(~r) = n(~r)
n(~r+ ~T) = n(~r)

n⇤(~r) =
X

~G

n⇤
~G
e�i~G·~r =

X

~G

n�~Gei
~G·~r = n(~r) ! n⇤

~G
= n�~G

n(~r+ ~T) =
X

~G

n~Gei
~G·(~r+~T) =

X

~G

n~Gei
~G·~r = n(~r) ! ei

~G·~T = 1

More heuristically: you only need to compute Fourier coefficients for a fraction of the total lattice, and the 
reciprocal lattice vectors are defined with respect to the real lattice vectors
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THE RECIPROCAL LATTICE (CONT.)

•We can use the above relationship to generate the reciprocal lattice vectors from the real lattice vectors.

•For real lattice vectors:                       we define 3 reciprocal lattice vectors:  

•These 3 reciprocal lattice vectors span the reciprocal lattice:

•It is worth noting that the reciprocal lattice vectors have units of inverse length.   Why?

n(~r+ ~T) =
X

~G

n~Gei
~G·(~r+~T) =

X

~G

n~Gei
~G·~r = n(~r) ! ei

~G·~T = 1

~G · ~T = 2⇡

{~a1,~a2,~a3} {~b1, ~b2, ~b3}
~ai · ~bj = 2⇡�ij

~G 2 {m1
~b1 +m2

~b2 +m3
~b3} mi 2 Z
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THE RECIPROCAL LATTICE (CONT.)

•So how can we use this relation,                             , to generate reciprocal lattice vectors?

•Life is simple for cubic lattices:

~ai · ~bj = 2⇡�ij

~
a1 = ax̂

~
a2 = aŷ

~
a3 = aẑ

~
b1 =

2⇡

a
x̂

~
b2 =

2⇡

a
ŷ

~
b3 =

2⇡

a
ẑ

•Things can certainly become trickier though...

~
a1 = ax̂

~
a2 =

p
3

2
aŷ � 1

2
ax̂

~
a3 = aẑ

~
b

i

= c
i,x

x̂+ c
i,y

ŷ + c
i,z

ẑ

Solve for the c coefficients
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THE RECIPROCAL LATTICE (CONT.)

~ai · ~bj = 2⇡�ij

~
a1 = ax̂

~
a2 =

p
3

2
aŷ � 1

2
ax̂

~
a3 = aẑ

~
b

i

= c
i,x

x̂+ c
i,y

ŷ + c
i,z

ẑ

Solve for the c coefficients

•Again, use                             .  This will give us 9 equations in 9 unknowns.

•                     should be trivially evident.

•We have to solve a small system for      and 

~b3 =
2⇡

a
ẑ

~b1
~b2

~a1 · ~b1 = ac1,x = 2⇡, ~a1 · ~b2 = ac2,x = 0

~a2 · ~b1 = �1

2
ac1,x +

p
3

2
ac1,y = 0, ~a2 · ~b2 = �1

2
ac2,x +

p
3

2
ac2,y = 2⇡
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THE RECIPROCAL LATTICE (CONT.)

~
a1 = ax̂

~
a2 =

p
3

2
aŷ � 1

2
ax̂

~
a3 = aẑ

~
b1 =

2⇡

a


x̂+

1p
3
ŷ

�

~
b2 =

4⇡p
3a

ŷ

~
b3 =

2⇡

a
ẑ

•While this isn’t all that difficult, there is a much simpler formula that can be used to generate 
reciprocal lattice vectors from real lattice vectors:

~bi = 2⇡
~aj ⇥ ~ak

~a1 · (~a2 ⇥ ~a3)
, (i,j,k) is a cyclic permutation of (1,2,3)
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THE RECIPROCAL LATTICE (CONT.)

•Having defined the reciprocal lattice, given a function with the periodicity of the lattice,
  how do we calculate the Fourier coefficients,        ?

n(~r)
n~G

•Orthogonality:

•We simply calculate the projection of our density onto the G’th Fourier component:

1

Vunit

Z

unit cell

d~r ei(
~G� ~G0)·~r = �~G ~G0

1

Vunit

Z

unit cell

d~r e�i ~G0·~rn(~r) =
1

Vunit

Z

unit cell

d~r ei(
~G� ~G0)·~rn~G = n ~G0
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BACK TO BRAGG

•To begin formalizing things a bit more rigorously, 
consider the following setup:
•A beam of x-rays is incident on our crystal 
with wave-vector: 
•The reflected beam is characterized by a 
wave-vector: 

~k

~k0

•Assuming the scattering process is inelastic, then the following relationship holds:

•The difference between these vectors,                            is deemed the scattering vector

|~k| = |~k0| = 2⇡

�

~k ~k0

~k0 � ~k = �~K

�~K
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BACK TO BRAGG (CONT.)

•We are interested in the following quantity, the 
scattering amplitude:

•This is the Fourier component of the density 
associated with the scattering vector.

•This quantity is the coefficient, at leading order, 
      to what is called a Born series.

~k ~k0

�~K

F (�~K) =

Z
d~r

X

~G

n~Gei(
~G��~K)·~r =

X

~G

n~G

Z
d~r ei(

~G��~K)·~r = V n�~K�~G,�~K

F (�~K) =

Z
d~r n(~r)e�i~�~K·~r

At leading order, we only see scattering if the scattering vector is in the 
reciprocal lattice
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BACK TO BRAGG (CONT.)

F (�~K) = V n~G ! I ⇠ V 2|~G|2
•The scattering intensity is simply the square modulus of the scattering amplitude:

•This is nice, but where do we get:                                  ?2d sin ✓ = n�

~G��~K = 0 ! ~k0 = ~k+ ~G ! |~k0|2 = |~k|2 + |~G|2 + 2~G · ~k

•By elasticity of the scattering process, we get:

•We can make things prettier by remember that         is also in the reciprocal lattice:  

|~G|2 + 2~G · ~k = 0

|~G|2 = 2~G · ~k
�~G
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BACK TO BRAGG (CONT.)

•You probably still don’t think that                              looks much like

•Let                                            ,   the triplet [hkl] is called a Miller index, and we will learn 
more about them on Wednesday.  

•As it turns out, this vector is perpendicular to the infinite set of parallel planes containing 
some set of atoms indexed by (hkl).  The distance between these planes is then given as:

2d sin ✓ = n�|~G|2 = 2~G · ~k
~G = h~b1 + k~b2 + l~b3

d(hkl) =
2⇡

|~G|

2

~G · ~k = 2|~G||~k| cos(⇡
2

� ✓) = |~G|2 ! 4⇡

�
sin(✓) = |~G|

•Which can be reduced to: 2d(hkl) sin(✓) = �
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CONCLUSIONS
•Take home messages from today’s lecture:
•X-rays, electrons, and neutrons can all be scattered off of crystalline solids to resolve their structure.
•Bragg’s law very simply encapsulates the conditions necessary for the observation of a diffraction peak in an 
elastic scattering experiment.
•We can derive the Bragg condition using the notion of a reciprocal lattice.
•Given real lattice vectors, it is fairly simple to generate reciprocal lattice vectors.
•Diffraction peaks will be observed for scattering vectors that are in the reciprocal lattice.

•On Wednesday’s lecture, we will answer the following questions:
•How do we define lattice planes in a crystal, and how are they identified from diffraction data?
•What is a Brillouin zone, and how is it related to the Wigner-Seitz cell?
•How is scattering from a lattice with a nontrivial basis any different from what we have discussed so far?
•What is the Ewald construction, and how does it relate to what we’ve learned so far?
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