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OVERVIEW

e First - we'll briefly discuss Friday’s quiz.

e [oday, we will answer the following questions:
* How do we experimentally probe crystal structure?
* What is a reciprocal lattice’?
* \What does the Bragg condition for diffraction have to do with the reciprocal lattice’
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THE SCAT TERING PARADIGM

* One of the most vital experimental philosophies, transcending all fields of physics, can be
(crudely) summarized as follows:

There is much knowledge to be gained from throwing known objects at unknown objects and
observing what happens

» Generally, the length scale of the known probe sets the maximum length scale that can be
resolved In the unknown.

*|n solids, the interatomic spacing is on the order of Angstroms (10-'° meters).

* \What can we use 1o resolve detalls on this length scale?
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PHOTONS

* Wavelength of visible light ~100s of nm
* About 3 orders of magnrtude larger than would
be necessary to resolve crystalline structure.

e X-rays have a sufficiently short wavelength

* \What are the energies associated with photons of
these wavelengths!
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Trend worth noting. Energy scales inversely with wavelength
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ELECTRONS

e Massive particles have a de Broglie wavelength that scales inversely with their momentum®
h g h

A==, E=1_ 3 \=

p 2m V2mE

*\What Is the energy of an electron with a de Broglie wavelength of | Angstrom!?

e o) (1240 eV nm)?

i — = —
2mA?  2mc*A? 2 x 511 keV x (0.1 nm)?

— 150 eV

* Note: Energy scales as the inverse square of wavelength
* [o double your resolution, you need to quadruple your energy..

*\We can reduce the energy even further Iif we increase the mass of the particle...

* Note that we are neglecting relativistic effects. This Is acceptable so long as the non-relativistic kinetic energy is much smaller than
the rest mass of the electron. This isn't the case in transmission electron microscopes (TEMs)!
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NEU TRONS

e Rest mass of a neutron is about 939 MeV/c? - 1837 times larger than an electron!

* The energy of a | Angstrom neutron is thus reduced by a factor of 1837...

B o electron,lzzl A
elect’r‘on,lzzl = Lllla = Eneutron,lA AR 1837 = sy

e Room temperature I1s about 0.026 eV..

(he) 1240 eV nm
Vo2mc2E V2 %939 MeV * 0.026 eV

* Relatively cold neutrons have a de Broglie wavelength short enough to resolve crystalline structure!

—0.177 nm = 1.77A

)\neutron, room temp —
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WHATI 1O USE!

* We typically use photons, electrons, and neutrons as probes of crystal structure, as they give
us both complementary and corroborating information.

e X-rays Interact with electronic polarizability

* tlectrons interact with electronic/nuclear charge distribution

* Neutrons interact with nuclel directly, or with magnetic moments

 Both elastic and Inelastic scattering experiments are used.
e tlastic scattering gives us information about static structure
* |[nelastic scattering gives us information about dynamics (excitations) of the crystal

* foday, we will primarily be discussing elastic scattering techniques, in the context of X-ray
scattering. The analysis Is easily transferrable to other types of scattering studies, though.

e Before we start into the mathematics, let us first discuss the history and state-of-the-art for
each of these techniques.
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X-RAY METHODS

* Only a few years after Roentgen received the first Nobel prize for
his discovery of X-rays (1901), the father-son physics duo of Bragg
and Bragg pioneered X-ray crystallography techniques

 Both received the Nobel Prize in [915. Only a year after Von
Laue, who also received a Nobel Prize for work in X-ray diffraction

* Fun facts:
e Von lLaue and Franck had their Nobel prizes dissolved in aqua
regia during WWI|. Left on shelf at Niels Bohr Institute.
* [he younger Bragg helped VWatson and Crick resolve the double
helix structure of DNA
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BRAGG'S LAW

e X-ray diffraction can be understood in terms of
a relatively simple construction.

* Crystal represented by planes of point-like
atoms separated by a distance ‘d’

e X-ray beam characterized by wavelength (A)
and angle of incidence (0).

*\When 2 rays are scattered from different planes
and experience constructive interference, a
diffraction peak will be observed.

e This condition can be expressed as: 2d sin @ = n\

*'n'Is the index of the diffraction peak.
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DERIVING BRAGG'S LAW

* Heuristic arguments aside, we will now construct a more rigorous approach to theoretically
characterizing scattering from crystals.

* o do so, we will first develop the notion of a reciprocal lattice.

e Fundamentally, our probe Is interacting with either a charge density, or maybe even a spin density,
that has the same periodicity as the lattice:

TL(F) — TL(F—I— rf), r]—f‘ ~ {nlé’l + noas + ngag} n; € 7.

* [he nice thing about periodic functions, like this, is that they are representable as a Fourier series:
N iG-¥
= E ThAE
G

s over all vectors in what I1s known as the reciprocal lattice to our real lattice

—

G

e Here, the sum on
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THE RECIPROCAL LAT TICE
:Znéez’éf

* We can impose strong constraints on the reaprocal lattice vectors_)based upon certain physical constraints
* [he quantity we are representing is a real-valued function: 72 (I') = n(r)

* [t has the same periodicity as the lattice: n( 1 T) — n( )

G
G G
n(r —+ rf) = Znéezc’ e — Znée@’ - n(r) — eiGT — q
G G

More heuristically: you only need to compute Fourier coefficients for a fraction of the total lattice, and the
reciprocal lattice vectors are defined with respect to the real lattice vectors
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THE RECIPROCAL LATTICE (CONT)

n(r —+ ’f‘) = Znéeié'(ﬂf) = Znéeié'F = n(r) — G T — 1
G €

*\We can use the above relationship to generate the reciprocal lattice vectors from the real lattice vectors.

— —

E il

e For real lattice vectors: { a1, &, a3 } we define 3 reciprocal lattice vectors:{b1, by, b3 }

—

5_)7; i bj — 27‘(’57;]'

* [hese 3 reciprocal lattice vectors span the reciprocal lattice:

é = {mlgl B mggg e mggg} m; € Z

* |t is worth noting that the reciprocal lattice vectors have units of inverse length. Why?
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THE RECIPROCAL LATTICE (CONT)

—

e So how can we use this relation, &; - bj — 27T57;j ,to generate reciprocal lattice vectors?

e Life is simple for cubic lattices: a7 = aX

é’gzaA
53_612

* [hings can certainly become trickier though..

by = %
a
_ T
——ébQI?y
= T
b; = —7Z
a
5:1:&}2
2 —\/gaA—lafc
KNS

Solve for the c coefficients

—

b; = Ci,xX I CiyY T Ci,z4
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THE RECIPROCAL LATTICE (CONT)

a; = aX

V3 . Solve for the c coefficients
52 = 7@}’ .- §CLX b@ — C’L',LU}A( e Ci’y}/\f “F Ci)zi
53 — aZz

—

e Again, use &; + b; = 2m0;; . This will give us 9 equations in 9 unknowns.

— T A L)l |
* b3 = —Z should be trivially evident.
e — —
*\We have to solve a small system for b1 and bo

51-b1:a01,x:27r, 51']2)2:&62,513:0

1 V3 e 1 V3

ar - by = —§a01,x | : aeih = rEsassihof=— —§a02,x | : ACol =20
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THE RECIPROCAL LATTICE (CONT)

B T A 1 g
e 2 — 13— [,
ad] — ax 1 Qa \/gy
3 1 - T,
ﬁg—iay——afc — by = Yy
2 3a
; ng—Z
a

e While this isn't all that difficult, there is a much simpler formula that can be used to generate
reciprocal lattice vectors from real lattice vectors:

25 2 X a
b; = 27— a]_) ak_, ,  (i,j,k) is a cyclic permutation of (1,2,3)
a; - (ap X ag)
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THE RECIPROCAL LATTICE (CONT)

* Having defined the reciprocal lattice, given a function with the periodicity of the lattice, n(F)

how do we calculate the Fourier coefficients, na ! /

1 L (G G
e Orthogonality: v / e g e 5@@,
unt

unit cell

* We simply calculate the projection of our density onto the G’th Fourier component:

1 — g _)/._’ — 1 — & ~ r
dit e 'S Tn(F) = dr XSGR M= = e,
Vunz’t Vunit

unit cell unit cell
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BACK TO BRAGG

* [0 begin formalizing things a bit more rigorously,
consider the following setup:
* A beam of x-rays Is incident on our crystal
with wave-vector: k

N TN - 3
. S - o o - -
~ ,-: ’, ‘-T g . ’: s ’ e ,. h

* [ he reflected beam is characterized by a SOGIGIAD
4,(,_,.;. N N e Y-V
wave-vector: k/ 0 0 AN LN
— —>/ 27’(’
e Assuming the scattering process is inelastic, then the following relationship holds: |k| = |k’| = BN

—

e The difference between these vectors, k! — k = AK is deemed the scattering vector
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BACKTO BRAGG (CONT)

* We are interested In the following quantity, the
scattering amplitude: B

F(AK) = /dr n(r)e " iAK-F | /

* [his Is the Fourier component of the density |
assoclated with the scattering vector. ,,:;,”‘ "; T e
0 D AR N ABARS

N NN

* This quantity is the coefficient, at leading order,
to what is called a Born series.

— —

F(AR) = [ dF 3 nge@0R1F_ S g [ a HG-2RF v, ghg g
G G

At leading order, we only see scattering if the scattering vector is in the
reciprocal lattice
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BACKTO BRAGG (CONT)

* [he scattering intensity Is simply the square modulus of the scattering amplitude:

F(AK) = Vng — I ~ V?|G|?
* This Is nice, but where do we get: 2dsin 0 = n\

—

G-AK=0—-K=k+G > [K|?=|k]>+|G>?+2G -k

* By elasticrity of the scattering process, we get: ‘G‘Z +2G - k=0

—

*\We can make things prettier by remember that — (& is also in the reciprocal lattice:

G2 =2G -k
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BACKTO BRAGG (CONT)

e You probably still don’t think that |G |2 = 2@ - k looks much like 2d sin 6 = n)\
y

elet G = hBl + kBQ + 163 . the triplet [hkl] is called a Miller index, and we will learn
more about them on Wednesday.

* As it turns out, this vector is perpendicular to the infinite set of parallel planes containing
some set of atoms indexed by (hkl). The distance between these planes Is then given as:

2

d(hkl) = 21

G
B SR = 4 2
2G-k:2\GHk\cos(g—9):\G\Q > ;\Tsin(é’):\(}\

*\\/hich can be reduced to: Qd(hl{?l) Slﬂ(e) — )\
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CONCLUSIONS

e Take home messages from today’s lecture:
 X-rays, electrons, and neutrons can all be scattered off of crystalline solids to resolve their structure.,
* Bragg's law very simply encapsulates the conditions necessary for the observation of a diffraction peak in an
elastic scattering experiment.
* We can derive the Bragg condition using the notion of a reciprocal lattice.
* Given real lattice vectors, it is fairly simple to generate reciprocal lattice vectors.
e Diffraction peaks will be observed for scattering vectors that are in the reciprocal lattice.

* On Wednesday's lecture, we will answer the following questions:
* How do we define lattice planes in a crystal, and how are they identified from diffraction data?
* \What is a Brillouin zone, and how is it related to the Wigner-Seitz cell?
* How is scattering from a lattice with a nontrivial basis any different from what we have discussed so far’
e \What is the Ewald construction, and how does it relate to what we've learned so far?
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