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OVERVIEW

•Today, we will answer the following questions:
•How do we classify crystallographic planes using Miller indices?
•What is a Brillouin Zone and how is it related to the Wigner-Seitz cell?
•How do we describe scattering from a lattice with a basis?
•How do we actually use X-ray diffraction to characterize crystals?
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BRAGG SCATTERING
•In the previous lecture, we discussed the Bragg condition:
•A monochromatic beam of X-rays is incident on a crystalline sample
•The beam undergoes specular reflection at well-defined crystallographic planes
•Constructive interference between reflected rays gives rise to diffraction peaks

•The Bragg condition gives a relationship between angle of incidence/reflection, wavelength of the 
interrogating beam, and the distance between crystallographic planes.

•When this equality is satisfied, a diffraction peak will be observed.

•We developed the notion of a reciprocal lattice to derive the Bragg condition formally:

•Bragg scattering occurs when the scattering vector is a reciprocal lattice vector associated 
with the crystal Bravais lattice.

•We were able to re-write the Bragg condition as follows:

2d sin ✓ = n�

|~G|2 = 2~G · ~k
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BRAGG SCATTERING (CONT.)
•We hand-wavily concluded, that we can show a direct equivalence between the two Bragg conditions:

•Our argument was based upon the physical interpretation of the reciprocal lattice vector, G 

•Here, h, k, and l, are integers called Miller indices. 

•A single fixed set of Miller indices describes an infinite set of crystallographic planes

•We claimed that the magnitude of G is related to the real space distance between these planes

•Aside from being the glue that holds together the two ends of this derivation, Miller indices are used to 
label crystallographic planes, and their associated diffraction peaks.

2d sin ✓ = n� |~G|2 = 2~G · ~k

~G = h~b1 + k~b2 + l~b3

d(hkl) =
2⇡

|~G|
2d(hkl) sin(✓) = �|~G|2 = 2~G · ~kand
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INDEXING CRYSTALLOGRAPHIC PLANES
•Other than defining a reciprocal lattice vector, these 3 integers, h, k, l, refer to families of crystallographic 
planes, that can be brought into coincidence by translation by a lattice vector.

•For a given plane, how do we construct these indices?

•Define a unit cell with respect to a set of 
real lattice vectors 
•Find the intercepts of the plane at integer 
multiples of the lattice vectors
•3, 2, 2
•Take the reciprocals of these integers
•1/3, 1/2, 1/2
•Clear fractions with a common multiplier
•2, 3, 3 (multiplied 1/3, 1/2, 1/2 by 6)
•Remove common multiples
•None in this example
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INDEXING CRYSTALLOGRAPHIC PLANES

•The only ‘exceptions’ arise for rhombohedral 
and hexagonal systems, wherein a 4th index is 
sometimes added.
•Some of the simpler planes are illustrated to 
the right.

•This triplet of integer indices is referred to as Miller indices, and they don’t just refer to crystal planes
•Indices are enclosed by (), [], {}, or <> - the type of brace indicates physical significance
•(hkl) : crystallographic planes, as discussed so far
•{hkl} : family of planes that are mapped onto each other under lattice’s group of symmetries
•[hkl] : crystallographic direction defined by real lattice vector with components h, k, l
•<hkl> : family of directions mapped onto each other under lattice’s group of symmetries
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GEOMETRIC INTERPRETATION
•There is one last feature of reciprocal lattice vectors & Miller indices worth noting
•In general, one geometrically defines a plane in terms of a vector that is normal to it.
•The reciprocal lattice vector with components h, k, l, is normal to the set of planes (hkl)!
•It is actually the shortest normal vector with integer components.

•Reciprocal lattice vector with components h, k, l is orthogonal to plane (hkl), and its magnitude 
scales inversely with the distance between consecutive (hkl) planes.
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EXAMPLE
•Consider the (111) and (100) planes of Silicon.

•Which has the higher areal density of Si atoms?

(100)

(111)

Wednesday, October 12, 11



EXAMPLE
•Both have 2 atoms per planar cross-section in the 
conventional unit cell.

•Area of (100) cross-section in unit cell = 

•Area of (111) cross-section in unit cell =

•The (111) plane has the higher areal density

•If you stumble upon a single crystal Si wafer, chances 
are it will be cleave on one of these two faces

•Which has the higher areal density of Si atoms?

(100)

(111)
•You will see these indices in a number of contexts 
outside of X-ray diffraction:
•Chemical reactivity depends on surface orientation
•Grains in polycrystals
•Anisotropic elastic, optical, and electrical properties

a2p
3

2
a2
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WIGNER-SEITZ REDUX
•Now that we understand the reciprocal lattice, let’s revisit the Wigner-Seitz unit cell

•Wigner-Seitz cell: primitive cell such that for a fixed lattice point, the WS cell is the volume 
surrounding it that is closest to that point

•Algorithm for construction
•Choose a lattice point
•Find its nearest neighbors
•Draw a line from the point to its
  neighbors
•Bisect this line with a plane
•Planes bound the Wigner-Seitz cell

bcc and fcc Wigner-Seitz cells (respectively)
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BRILLOUIN ZONES
•In real space, this was just a convenient method for constructing high symmetry primitive cells

•In reciprocal space, the Wigner-Seitz construction produces what is called the first Brillouin zone

•Wigner-Seitz cell and first Brillouin zone refer to equivalent mathematical constructs, one is 
in real space, the other is in reciprocal space.

fcc and bcc first Brillouin Zones (respectively)

•A convenient duality exist for bcc and fcc lattices
•Reciprocal lattice of bcc = fcc
•Reciprocal lattice of fcc = bcc
•The bcc first Brillouin zone is 
congruent to the fcc Wigner-Seitz cell, 
and vice-verse!
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BRILLOUIN ZONES (CONT.)
•In real space, this was just a convenient method for constructing high symmetry primitive cells

•In reciprocal space, the Wigner-Seitz construction produces what is called the first Brillouin zone

•Wigner-Seitz cell and first Brillouin zone refer to equivalent mathematical constructs, one is 
in real space, the other is in reciprocal space.

fcc and bcc first Brillouin Zones (respectively)

•A convenient duality exist for bcc and fcc lattices
•Reciprocal lattice of bcc = fcc
•Reciprocal lattice of fcc = bcc
•The bcc first Brillouin zone is 
congruent to the fcc Wigner-Seitz cell, 
and vice-verse!
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BRILLOUIN ZONES (CONT.)
•So why do we care? 

•Bragg condition: diffraction peak will be observed if scattering vector,                           , is a 
reciprocal lattice vector 

•The projection of the incident wave vector along the reciprocal lattice vector producing diffraction 
must be half the magnitude of the reciprocal lattice vector.

•k vectors that satisfy this criterion define a plane in 
  reciprocal space, that we call Bragg plane

•The boundaries of the first Brillouin zone (and higher)
   will be Bragg planes!

�~K = ~k0 � ~k

|~G|2 = 2~G · ~k ~k ·�K̂ =
1

2
|�~K|
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BRILLOUIN ZONES (CONT.)

•Here is a summary of what we know about X-ray scattering now:
•From the real space lattice, we can construct a reciprocal lattice
•From the reciprocal lattice, we can construct the first Brillouin zone, using Wigner-Seitz construction
•From the Brillouin zone, we can find Bragg planes, which describe incident wave-vectors at which
  Bragg scattering occurs.
•We can work this backwards just as easily!

•You will see that the Brillouin zone is an important concept in electronic structure as well.  
•Namely, the potential that electrons feel moving around in the lattice is also periodic.  
•Electronic dispersion will be heavily modified in the vicinity of Bragg planes
•Basic content of the nearly free electron model.
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BRAGG SCATTERING WITH A BASIS

•Before moving onto electronic structure, we will consider Bragg scattering in one more context: with 
a basis assigned to the underlying Bravais lattice.

•We previously defined the scattering amplitude for a lattice with a trivial basis:

•To add a basis, we need to introduce a quantity known as the geometric structure factor.

•For a lattice with a basis consisting of n identical atoms at                         and a scattering vector  

•This is just a phase shift that arises due to scattering from the basis atoms at each lattice point.

F (�~K) =

Z
d~r n(~r)e�i~�~K·~r

S�~K =
nX

j=1

ei�
~K· ~dj

{~d1, . . . , ~dn} �~K
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STRUCTURE FACTORS
•Previously, we saw that the intensity of a Bragg peak was proportional to the modulus square of the 
Fourier coefficient associated with the scattering vector (which was zero unless it was in the 
reciprocal lattice).

•It is now proportional to the modulus square of the geometric structure factor as well!

•The net result of adding the geometric structure factor is the extinction or enhancement of certain 
Bragg peaks.

•When the Fourier coefficient of the density is non-zero, the structure factor may still be zero!

I ⇠ V 2|n~G|2 ! I ⇠ V 2|n~G|2|S~G|2
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STRUCTURE FACTORS (CONT.)

•For the diamond crystal structure, recall that we have an fcc 
lattice with a basis of 2 atoms:
•(0,0,0) and (1/4, 1/4, 1/4) - components using Cartesian basis

•The reciprocal lattice is a bcc with primitive vectors:
•(-1/2,1/2,1/2), (1/2, -1/2, 1/2), and (1/2, 1/2, -1/2)

•On the right, the structure factor is evaluated a number of 
different reciprocal lattice vectors

•Diffraction peaks associated with white spots are removed 
from the usual fcc diffraction pattern

S�~K =
nX

j=1

ei�
~K· ~dj
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STRUCTURE FACTORS (CONT.)

•Not much changes when you add a polyatomic basis. 

•Structure factor will now have to depend upon the charge distribution at each basis site

•Constructing structure factors for large crystals is essential to study of proteins using X ray 
crystallography
•Here, the unit cell may have a basis on the order of 10,000 atoms
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CONCLUSIONS

•In summary:
•Miller indices are triplets of integers used to index crystal planes and directions
•The Brillouin zone is just the Wigner-Seitz cell in reciprocal space
•The boundaries of the Brillouin zone are Bragg planes
•The introduction of a basis to the Bragg scattering problem, extinguishes certain 
Bragg peaks that would otherwise be there in the case of a trivial basis.
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