Physics 842 – Fall 2011 Classical Electrodynamics II

Notation differences between Landau & Lifshitz and PHY842 lectures & homeworks

Physical quantity	Landau & Lifshitz	PHY842 lectures and homeworks		
Chapters 1 and 2:				
electric charge	e	q		
dielectric susceptibility	у к	$\chi_{ m e}$		
Chapter 3, section 26 has some confusing definitions:				
chemical potential	ζ	μ		
internal chemical pote	ntial ζ_0	$\mu_{ ext{int}}$		
energy flux density	q	j ε		
heat current	${f q}$ - $\phi{f j}$	$\mathbf{j_q} = \mathbf{j_\epsilon}$ - $\mu \mathbf{j_n}$		
Landau & Lifshitz redefine ϕ on page 97 as $\phi + \zeta \sqrt{e}$ to include the chemical r				

Landau & Lifshitz redefine ϕ on page 97 as $\phi + \zeta_0/e$ to include the chemical potential. The new ϕ introduced by L&L is equal to μ/q in my notation.

The modern way to view this is to say that the total chemical potential is a sum of an "internal" term and an "external" term: $\mu = \mu_{int} + \mu_{ext} = \mu_{int} + q \phi$, where ϕ is the usual electrostatic potential. (The external term could also include the effect of gravity or any other external force.)

thermopower	α	S
Chapter 4:		
total current density	ρν	j or j _{total}
contributions to current	$\rho \mathbf{v} = c \nabla \times \mathbf{M} + \mathbf{j}$	$\mathbf{j}_{total} = c\nabla \times \mathbf{M} + \mathbf{j}_{free}$
surface current density	g	J

(I do not like the L & L use of ρv for total current density, since "bound currents" include electric spins, which cannot be thought of as a charge density ρ moving at velocity v.)