Physics 842 – Fall 2011 Classical Electrodynamics II

Problem Set #7 – due Thursday November 3

1. A right circular cylinder of radius R and length L is a uniformly-magnetized along its axis.

a) Last week you calculated \vec{B} along the axis of the cylinder (both inside and outside) using the surface current density J_s . This week I want you to calculate \vec{B} along the axis using the magnetic scalar potential and the <u>fictitious</u> magnetic charge density $\rho_m = -\vec{\nabla} \cdot \vec{M}$. Solve the Poisson equation $\nabla^2 \phi_m = -4\pi \rho_m$ the same way you would do if this were an electrostatics problem:

$$\phi_m(\vec{r}) = \int \frac{\rho_m(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} d^3 r'$$

where the magnetic charge is actually a surface charge density on the two ends of the cylinder: $\sigma_m = \vec{M} \cdot \hat{n}$. Compare your answer with what you obtained last week using the surface current density. Hint: Be careful with absolute values when you take square roots.

- 2. Find \vec{B} everywhere in space for a uniformly magnetized sphere. For this problem, I suggest you also use ϕ_m , but solve the problem using Legendre polynomials and the correct boundary conditions for \vec{B} and \vec{H} at the surface of the sphere.
- 3. A toroidal electromagnet consists of a soft iron core of permeability $\mu >> 1$ with N turns of copper wire wound around it, carrying current *I*. The gap between the pole pieces is *d*, the width of the pole pieces is *w*, and the average radius of the toroid is R=(a+b)/2.
 - a) Assuming that $d \ll w \ll R$, calculate the magnetic field B in the gap. Use

 $\vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{j}$ and the boundary condition on B_{\perp} at the pole pieces.

b) Simplify your expression in the limit $\mu >> R/d$.

Note that this problem can be solved in two lines once you've figured out how to set it up.

(over)

4. Consider a spherical shell of material with magnetic permeability μ , with inner and outer radii *a* and *b*, respectively, placed in a uniform external magnetic field \vec{B}_0 .

a) Calculate \vec{B} everywhere in space. (This shouldn't be too difficult, because you already did the dielectric equivalent of this problem on Problem Set #3.)

b) Simplify your expression for the field inside the cavity in the limit $\mu >> 1$. You should find that the field is proportional to $1/\mu$. This is how magnetic shielding works. The field lines are concentrated inside the magnetic material, so very little field leaks into the cavity.

Quiz #7

The quiz on Tuesday, November 8, will consist of one of the following problems:

- Problems 1 4 on Problem Set #7
- Problems 1 4 at the end of Section 30 (problem 2 won't be on the quiz, but I want you to look at it.)