Physics 842 – Fall 2011 Classical Electrodynamics II

Problem Set #8 – due Tuesday November 15

1. The magnetization of a ferromagnet is proportional to the total angular momentum of the electrons (spin and orbital). $\vec{m} = -\gamma \vec{J}$. If we apply a magnetic field \vec{H} , there will be a torque on the magnetic moment. Averaging over all the individual moments to get the macroscopic limit, we obtain the Landau-Lifshitz equation:

$$\frac{d\dot{M}}{dt} = -\gamma \vec{M} \times \vec{H}$$

Find the time evolution of \vec{M} in a ferromagnet placed in a constant field \vec{H}_0 . Hint: You should find oscillations at the Larmor frequency, $\omega_L = \gamma H_0$.

- 2. Consider an infinite ferromagnet in a uniform constant field \overline{H}_0 along the z-axis, and an additional weak field $\overline{h} \cos(\omega t)$ along the x-axis. Calculate the steady-state small oscillations of the magnetization \overline{M} at frequency ω using the Landau-Lifshitz equation, to first order in \overline{h} . (Do <u>not</u> include the solution to the homogeneous differential equation oscillations at the Larmor frequency -- which you found in problem 1.) Hints: Write the oscillating field as $\overline{h}(e^{i\omega t} + e^{-i\omega t})/2$ and just treat the first term. Then write the total magnetization as $\overline{M} = \overline{M}_0 + \overline{m}e^{i\omega t}$, plug in and solve for \overline{m} . Notice that your solution diverges on resonance; that is because we have not included the damping terms in the Landau-Lifshitz equation.
- 3. Complete our class discussion of magnetization reversal for a ferromagnet with uniaxial anisotropy: Describe the evolution of the energy density *u* as a function of the angle θ between the magnetization \vec{M} and the easy axis \hat{z} as the magnetic field varies from large positive H_z to large negative H_z , with $0 < H_x < \beta M$. (See Figure 21 in Section 41 of Landau and Lifshitz. Note that L&L utilize the thermodynamic potential $\tilde{\Phi}$ rather than the energy density.) Make plots of *u* vs θ for several values of H_z ; then make a plot of M_z vs. H_z . Explain what happens when H_z crosses into the interior of the astroid coming from large positive H_z , and when it leaves the astroid going toward large negative H_z .

Quiz #8

The quiz on Thursday, November 17, will consist of one of the following problems:

- Problems 1 3 on Problem Set #8
- Problems 4, 5, and 7 at the end of Section 34. (Don't worry about the integrals in problem 4 they are not easy!)