## Physics 842 - Fall 2011 Classical Electrodynamics II

## Problem Set \#8 - due Tuesday November 15

1. The magnetization of a ferromagnet is proportional to the total angular momentum of the electrons (spin and orbital). $\vec{m}=-\gamma \vec{J}$. If we apply a magnetic field $\vec{H}$, there will be a torque on the magnetic moment. Averaging over all the individual moments to get the macroscopic limit, we obtain the Landau-Lifshitz equation:

$$
\frac{d \vec{M}}{d t}=-\gamma \vec{M} \times \vec{H}
$$

Find the time evolution of $\vec{M}$ in a ferromagnet placed in a constant field $\vec{H}_{0}$. Hint: You should find oscillations at the Larmor frequency, $\omega_{L}=\gamma H_{0}$.
2. Consider an infinite ferromagnet in a uniform constant field $\vec{H}_{0}$ along the z-axis, and an additional weak field $\vec{h} \cos (\omega t)$ along the x-axis. Calculate the steady-state small oscillations of the magnetization $\vec{M}$ at frequency $\omega$ using the Landau-Lifshitz equation, to first order in $\vec{h}$. (Do not include the solution to the homogeneous differential equation oscillations at the Larmor frequency -- which you found in problem 1.) Hints: Write the oscillating field as $\vec{h}\left(e^{i \omega t}+e^{-i \omega t}\right) / 2$ and just treat the first term. Then write the total magnetization as $\vec{M}=\vec{M}_{0}+\vec{m} e^{i o t}$, plug in and solve for $\vec{m}$. Notice that your solution diverges on resonance; that is because we have not included the damping terms in the Landau-Lifshitz equation.
3. Complete our class discussion of magnetization reversal for a ferromagnet with uniaxial anisotropy: Describe the evolution of the energy density $u$ as a function of the angle $\theta$ between the magnetization $\vec{M}$ and the easy axis $\hat{z}$ as the magnetic field varies from large positive $H_{z}$ to large negative $H_{z}$, with $0<H_{x}<\beta M$. (See Figure 21 in Section 41 of Landau and Lifshitz. Note that L\&L utilize the thermodynamic potential $\widetilde{\Phi}$ rather than the energy density.) Make plots of $u$ vs $\theta$ for several values of $H_{z}$; then make a plot of $M_{z}$ vs. $H_{z}$. Explain what happens when $H_{z}$ crosses into the interior of the astroid coming from large positive $H_{z}$, and when it leaves the astroid going toward large negative $H_{z}$.

## Quiz \#8

The quiz on Thursday, November 17, will consist of one of the following problems:
■ Problems 1-3 on Problem Set \#8

- Problems 4, 5, and 7 at the end of Section 34. (Don't worry about the integrals in problem 4 - they are not easy!)

