Physics 431 Final Exam

THU, DECEMBER 15, 2011
3:00 — 5:00 P.M.
BPS 1308

o Calculators, TWO letter-size sheets “handwritten notes” => OK
o Graded lab reports, Textbook, Handouts, Lecture Notes/Slides = OK

. HW solutions (allowed if written on TWO note sheets), laptops,
smartphones, or similar electronic devices=» NO

The exam includes topics covered throughout the semester
The exam consists of problems totaling 250 pts.

Show all work on exam pages

Grades will be posted at BPS 4238 & Angel by 12 pm Monday, December 19.

Remember your “pass code” from the final exam if you intend to check your
grades in my office.

Final exam problems are NOT limited to the following slides.
Check “Final Exam Topics”. The exam is accumulative and covers all materials.
Review the example final exam and HW assignments.
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Index of refraction and ‘speed’ of light

The speed of light in vacuum is a physical constant.

¢ =299 792 458 m/s (exact) ~ 3x10% m/s

In a medium, light generally propagates more slowly.

— mair: v=c¢/1.0003 n,. = 1.00

— 1n water: v = ¢/1.33 Nyaier = 1.33

— 1n glass: v=c¢/1.52 Nyjpes = 1.52
In general:

v = ¢/n 1s the “phase velocity”
wavelength/n
frequency is the same (in linear optics)

n also depends on the wavelength =» dispersion.



Snell’s Law

nysinf; = nysinf, .

Frequency is the same.

1. Huygens' principle
2. Fermat’s principle
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3. Interference of all possible paths of light wave from source to observer
— it results in destructive interference everywhere except extrema of phase
(where interference is constructive)—which become actual paths.

4. Application of the general boundary conditions of Maxwell equations for

electromagnetic radiation.

[Chapter 23]

=» amplitude of reflected and refractive waves

5. Conservation of momentum based on translation symmetry considerations



Derive Snell’s Law by Translation Symmetry

A homogeneous surface can not change the transverse momentum. E = pC

p=hk

The propagation vector is proportional to the photon's momentum.

The transverse wave number must remain the same.
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Reflection and Transmission (Fresnel’s equations)

Can be deduced from the application of boundary conditions of EM waves.
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Reflection and Transmission of Energy @ dielectric interfaces

Recall Poynting vector definition:

IS] =@§HEH2

different on the two sides of the interface

2
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Polarization by Reflection

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polar.html

The reflection coefficients are
different for waves parallel and
1 perpendicular to the plane of

et 100%
incidence.
Brewster 1 - Reflected intensity
o ' Angle | for rays parallel
| x +~ and perpendicular
\ — % to the plane of
& incidence.
=
S0 o
-
— @
o
I
L
(-
When light is incident at the Brewster 1 0% ;
angle, the reflected light is linearly 0° 30° 60° 90°

polarized because the reflection

L . Brewster
coefficient for the Il component is zero.

Angle



Polarization by scattering (Rayleigh scattering/Blue Sky)

FIGURE 8.36 Scattering of unpolarized light by a molecule.

FIGURE 8.35b



Ray Diagrams for Spherical Mirrors

Ray Diagrams

R<0

A

N -

()
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Imaging Formation by a Mirror

P Special rays Mirror plane = I— Mirror plane
\
Object =%
N,
' Real v
. Rea Virtual
: image .
1mage
P N
f
s’ >
I )
: 5 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
This ray entered parallel to the This ray was heading for the
optical axis, and thus appears to «-...,, focal point, and thus emerges
have come from the focal point. - parallel to the optical axis.
s’
Special rays « >
P o \ .:.
. .. N
Object _ § ..
. I~ ~
) . ~
. w~ ~
v o ta P
i ::‘—:5:7//// \s\\\
- S
UG LB
Optical axi /7, Virtual
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> Mirror plane
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Refraction at a Spherical Surface

y A

object odew!

X € S > X
origin=V

© 2007 Pearson Prentice Hall, Inc.

When R —> oo (i.e.a plane surface)




EXAMPLE A goldfish in a bowl

VISUALIZE FIGURE 23.46 shows the rays refracting away from the
normal as they move from the water into the air. We expect to find
a virtual image at a distance less than 10 cm.

FIGURE 23.46 The curved surface of a fish bowl
produces a virtual image of the fish.

Virtual image

s = 10 cm




EXAMPLE A goldfish in a bowl

SOLVE The object is in the water, so n; = 1.33 and n, = 1.00.
The inner surface is concave (you can remember “concave”
because it’s like looking into a cave), so R = —25 cm. The object
distance i1s s = 10 cm. Thus Equation 23.21 is

133 1.00  1.00 — 1.33 033
C

+
10 cm s’ —25 cm 25 cm

Solving for the image distance s’ gives

1.00 0.33 1.33 i
— = — = —0.12 cm
0 25 cm 10 cm
, 1.00
g = — = —83cm
—0.12 cm

ASSESS The image is virtual, located to the left of the boundary. A
person looking into the bowl will see a fish that appears to be
8.3 cm from the edge of the bowl.



Example of refraction by spherical surfaces

Explain the imaging formation by a cylinder filled with water.
Be specific (i.e. use ‘real’ values’), See Example 2-2 (page 34)

m=1 TS T T

Y

A A

(b)

© 2007 Pearson Prentice Hall, Inc.



Summary of Image Formation: Spherical Mirrors & Thin Lenses
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image

, origin=V
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TABLE 2-1 SUMMARY OF GAUSSIAN MIRROR AND LENS FORMULAS

Spherical surface

Plane surface

1+l—lf—_£ S’__S
| g & F 2
yy S,
Reflection ppject m=—— m = +1
s
Image Concave: f > 0,R <0
X' o) Convex : f <0,R >0
X
ny ny _ ny — My _ ny
N s R ° T nlS
. : nys’
Refraction Single surface m= - m = +1

1yS
Concave: R < 0
Convex : R >0

Refraction Thin lens

!

yy

object image

X € — : » x'

111
s 5 r
1 _ m- nl( 1
fooom Ry
S,
m=——
s
Concave: f < 0
Convex : f > 0

le— d—]

The lensmaker’s formula

1 1 1  (n—-1)d
_— ) — 1 — | — ‘
F=-1) [Rl Ry, " nRiR, ] '

A “Thin” lens=>» d is negligible

)

the lensmaker’s formula

origin=V

The refractive power of a lens of
focal length f

D [diopters] = :

f [in meters]




Newtonian Equation for the Thin Lens

A
< S, -=S; —>
s «— [—>]< X-=x, —>
A | |
[0 hO I I
\ | |
: F F
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(a) ——— Lens plane

Y

Far focal point

\

Y

Y

Y

Y

Parallel rays 4

Any ray initially parallel to the optical
axis will refract through the focal point
_..on the far side of the lens.

Parallel rays

\

Y/ 1YY
X

Any ray initially parallel to the
optical axis diverges along a line
through the near focal point.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Major Rays

(b) —— Lens plane

Near focal point

4 Parallel rays

Any ray passing through the near focal
point emerges from the lens parallel to
the optlcal ax1s

2098 P Eustin, o b s Peen s s

\ Parallel rays
< >
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>
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Far tocal point

/4—»

Any ray directed along a line toward
the far focal point emerges from the
lens parallel to the optical axis.

(0

Rays are
Center of lens not bent.
Any ray directed at the center of the lens
passes through in a straight line.

ol

Center of lens

Rays are not bent.

Any ray directed at the center
of the lens passes through in a
straight line.



Thin Lens Combination =2 Sequential Imaging

Reading Assignments
1. Example 2-3 (page 38)

2. Java Applets

http://silver.neep.wisc.edu/~shock/tools/ray.html

(See also Lab #1 Appendix)

(1) A @Y
> RO,
1 F RI, Vi, F
RO] Fl Fz\\& < ///";
%
- Y _ S
v A
(a)
(1) A (2) A
y > VO,
F, RI, RI,
RO, F, F Ve :
S >
N \\ |
_ I N
> =
BN
v v

(b)
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Simple Magnifiers

o, hls 25

M =

X o, hi25 s

< 25 cm >
v
Magnifiers
For relaxed-eye viewing, the angular magnification is
__25cm
/

In microscopes and telescopes, the eyepiece acts as a magnifier
to view the image of the objective.



Magnifying Glass/Virtual Image

A ray along a line through the near focal
point refracts parallel to the optical axis.

, s’ k
s :

P’ ] g

e, >
SR
\ \\ - Copyright © 2008 Pearson -EducauonA Inc., publishing as Pearson Addison-Wesley.
Sk Focal point
’
o (a) The refracted rays are diverging

~~and appear to come from P’.

Virtual Object

. P’ ¢
image

A

The refracted rays are diverging. X‘S;?l Dfyjeet
. F,
They appear to come from point P’. ,
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. f YO Ll r e ye 6 Se e S Py th e

virtual image at P’.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



The Telescope

A simple telescope contains a large-diameter objective lens which

collects parallel rays from a distant object and forms a real, inverted
image at distance s’ = f,..
The focal length of a telescope objective is very nearly the length of

the telescope tube.
The eyepiece functions as a simple magnifier.

The viewer observes an inverted image. 0 o
eye obj

The angular magnification of a telescope is | M = =

Hobj feye

Angle subtended by
Angle subtended by the distant object. the virtual image
' ' seen by the eye.
Objective :

Focal points :  Eyepiece

coincide\"'., 0. ))

g
.........

The eyepiece acts as a

I’ . I > magnifier to form an
o) e image at infinity that is

a distant object seen by a relaxed eye.

Parallel rays from



Telescope

Objective
A
—s ]

Ocular

— . |

v
E,P L=f

+
Objective D

—_

4 D, =—"% the diameter of the exit pupil

N

E P

n



The Microscope

E.P

X

S Eyeilece
~
. . ~
Objective e
A —~— =
| I
(|) | —— Y > — |
| | ! =" |
| v | e =
! Ep : el |
n
L | | = b |
—
| |<—f(,—>l<—f0—>-l<7 >t 2 >l f >|
| v 1 | |
| Ky SIO |

—~
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L
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f obj

Prism (bends light path
so that eyepiece is at a
comfortable angle)

(a) Eyepiece

Objective lens

b
Stage (moves up
and down to
focus sample)

-

I1luminator 7

Focus knob




The Microscope

* A specimen to be observed is placed on the stage of
a microscope, directly beneath the objective, a
converging lens with a relatively short focal length.

* The objective creates a magnified real image that 1s

further enlarged by the eyepiece.

« The lateral magnification of the objective 1s

s’ L

Moy — =7

S Tois

 Together, the objective and eyepiece produce a total
angular magnification

I 25cm
M =

M = mobj eye _fb' f
obj eye




Numerical Aperture

O: half-angle subtended by the
imaging system from
an axial object

medium of

refr. index n .
Numerical Aperture
(NA) =n sinB

Speed ({/#)=1/2(NA)
pronounced f-number, e.g.
/8 means (/#)=8.

Paraxial approximation

. Aperture stop
S (0) ~ tan (6) ~0 the physical element which
D/2 1 limits the angle of acceptance of

— NA 7 =5 T the 1imaging system

The spatial resolution limit due to diffraction
= 1.22xf A /D=0.61xA/NA [Rayleigh Criterion].



The Microscope: Objective and Numerical Aperture (NA)

NA=nsmno

/
Angle a is half the Object
angular size of the
objective as seen
by the object.
(b)
Magnification Plan Apo Numerical
60x/0.95 aperture

DIC M
/0.11-0.23 WD 0.15

Cover glass
adjustment gauge

Oil-immersion microscope

|
|
|
|
|
|
|
| L
|

|

Ol Air

I
o
N 1

Cover glass

Microscopes

The object is very close
to the focal point of the
objective. The total
magnification is

L 25cm
 fay e

The spatial resolution is
din = 0.61A/NA

where NA is the numerical

aperture of the objective lens.

o

Prentice Hall, Inc.

Eyepiece —g \

Objective *



f-number and irradiance/intensity [W/m?]

The light intensity on the detector is
related to the lens’ s f-number by
D’ |

Jox = =

f*  (f-number)?

“ f

© 2007 Pearson Prentice Hall, Inc.

Y

TABLE 3-2 STANDARD RELATIVE APERTURES

AND IRRADIANCE AVAILABLE ON CAMERAS

Cameras A = f-number (A = f-number)? e
Forms a real, inverted image on a detector. The lens’s f~-number is 1 1 E,
14 2=14 2 Ey/2
f-number = D o) 4 Ey/4
2.8 8 Ey/8
The light intensity on the detector is 4 16 Ey/16
] 5.6 32 Ey/32
e 8 64 E,/64
(f-number) 11 128 E,/128
16 256 Ey/256
22 512 Eo/512

© 2007 Pearson Prentice Hall, Inc.



A lens both focuses and diffracts the light

(a) A lens acts as a circular aperture.

Wave fronts

/

Rays are converging
to the focal point.

| Not focused

.
Q.‘
0

.'“( o

* Spherical wave
fronts are converging
to the focal point.

| Not focused

Rays are perpendicular
to the wave fronts.

g

(b) The aperture and focusing effects
can be separated.

Wave fronts

Ideal diffractionless lens
with focal length f

<(o

Circular aperture
of diameter D

U\ f

(¢) The lens focuses the diffraction
pattern in the focal plane.

Wave fronts

4

Parallel
bundle
of rays

The first dark fringe
is focused at position y,.

Width

sl

Light intensity

F
Light is diffracting at angle 6,
to the first dark fringe.



The Resolution of Optical Instruments

The minimum spot size to which a lens can focus light of wavelength

A is

2.44\f . ,
Wiin = 20, = D (minimum spot size)

where D is the diameter of the circular aperture of the lens, and fis the
focal length.

In order to resolve two points, their angular separation must be greater
than 6_. , where

min?

1.22A :
0.in = D (angular resolution of a lens)

1s called the angular resolution of the lens.



Important Concepts

1
Lens power: P = ?diopters, I1ID=1m"'

Resolution

TE—
e

The angular resolution of a lens of diameter D is
0. = 1.22\/D

Rayleigh's criterion states that two objects separated by an
angle a are marginally resolvable if « = 0,;,,.



Four diffraction-limited lenses focus plane waves
of light with the same wavelength /. Rank order,
from largest to smallest, the spot sizes w, to w,.

moawy>

Wy = W3 > Wy > W,y
W =Wy > W3 > W,
Wy = W3 > W, =W,
Wi = Wy > Wy = Wy
Wy = Wy = W3 = Wy

f=10cm

2cm

f=24cm

4 cm




Eye

retina

aqueous

vitreous fovea-macula

optic nerve
cornea

Visual Acuity (VA)

iris
t
(mm) n R (mm)
cornea f 0 1.376 7.7
b 0.5 6.8
aqueouns 1.336
lens f 4.0 1.386-1.406 10.0 (relaxed). 5 (focused)
b 7.0 —6.0 (relaxed). —5 (focused)

vitreous 1.336
retina 24.4

The separation between cone cells in the fovea corresponds to about 1’ (0.3 mrad). At close viewing dis-

tance of 25 cm, this gives a resolution of 75 um.

This 1s close to the diffraction limit imposed by NA of the eve.

Visual acuity (VA) is defined relative to a standard of 1 minute of arc. VA = 1/(the angular size of small-

est element of a letter that can be distinguished [in min])

dist fo farget (usually 20 ft)

VA is usually expressed as | — , -
dist at which target element is 1 min

For 20/20 vision, the minimum element is 1 min at 20 ft.

The overall power of the eye is ~ 58.6 D. The lens surfaces are not spherical, and the lens index is higher
at the center (on-axis). Both effects correct spherical aberration. The diameter of the iris ranges from 1.5

— 8 mm.
range of clear vision 25| cm
Topics/Keywords: pear
Eye model, Visual Acuity, Cones/Rods 50 em
accommodation, eyeglasses, |
. . . far
nearsightedness/myopia, farsightedness/ point
hyperopia |

normal
eye

myopic
eye

corrected
myopic
eye




Human Eye — Gullstrand Model

Choroid

Ciliary muscle

Sclera

Cornea

Blind spot

P4
|
[
I
!
|
I
l
I
[
I

|
I
| |
! |
|
le—7.33—~ |
15.7 e 24.4 -

Table 10A PRINCIPAL DIMENSIONS FOR GULLSTRAND’S SCHE-
MATIC EYE
Overall power of eye = 58.64 D

Axis Radius
Refractive position, curvature,
index mm mm
Cornea, anterior 1.376 0 7.7
and posterior 0.5 6.8
Aqueous humor 1.336
Vitreous humor ' 1.336
Lens:
Cortex, anterior 1.386 3.6 10.0
and posterior 7.2 —-6.0
Core, anterior 1.406 4.15 7.9
and posterior 6.57 5.8
Cardinal points:
AH 1.348
AH’ 1.602
AN 7.08
AN’ 7.33
AF —15.70

AF’ 24.38




Retina — Cones and Rods

Rods are most sensitive to light, but do not sense color, motion

445 nm 535 nm 575 nm

Cones are color sensitive in bright light.

You have ~ 6 mllion cones, ~ 120 million rods, but only 1 mullion nerve fibers.

Cones are | -1.5 ym diameter, 2 -2.5 ym apart in the fovea. 5 g
g2

\ o 58

Rods are ~ 2 um diameter 22
o

The macula 1s 5° to the outside of the axis.

i

FOb nm

The fovea 1s the central 0.3 mm of the macula. It has only cones and 1s the center of sharp vision.

500 530 600 650

450
=
= S Z =
. . arpe < o X c
Current understanding is that the 6 to 7 million cones can be $t f¢ o7 § 5§ B %‘ 3 % -
28 Sfm =m= 6 =25 26 &6 &

divided into "red" cones (64%), "green" cones (32%), and

"blue" cones (2%) based on measured response curves.
Human spectral sensitivity to color

Three cone types (p, v, 8) correspond roughly to R, G, B.

200

150

100

(4]
o
Relative sensitivity

Density in thousands per square mm

-80 -60 -40 - 40 60 30 460 490 500 530 600 650 700
Angular separation from fovea {degrees) T . T Wavelength (nm) T

Blue Cvyan Green Red



Stops, Pupils, and Windows

Summary of Terms

Brightness
Aperture stop AS: The real element in an optical
system that limits the size of the cone of rays accepted

by the system from an axial object point.

Entrance pupil E, P: The image of the aperture stop
formed by the optical elements (if any) that precede it.
Exit pupil E,P: The image of the aperture stop formed
by the optical elements (if any) that follow it.

Field of view

Field stop ES: The real element that limits the angular
field of view formed by an optical system.

Entrance window E_ W: The image of the field stop
formed by the optical elements (if any) that precede it.
Exit window E,W: The image of the field stop formed
by the optical elements (if any) that follow it.

Chief Ray

The chief, or principal, ray is a ray from an object
point that passes through the axial point, in the plane of
the entrance pupil.




Particle Nature of Light

Photon=elementary light particle O .

Mass=0
Speed ¢=3x108 m/sec

According to Special Relativity, a mass-less particle travelling
at light speed can still carry energy (& momentum)!

Energy E=hv —— relates the dual particle & wave
nature of light;

h=Planck’s constant
=6.6262x10-3% J sec

=4.1357x107" eVs

v 1s the temporal oscillation
frequency of the light waves

Power _ [Wartt =7 /s]
— 7] N is the number of photons per second.

N [#] s]=
Energy/ photon

See Example 1-2, page 10 in Pedrotti3.



Wave-Particle Duality of Light

Photon=elementary light particle O >

Energy E=/v

C=AV

h=Planck’s constant

=6.6262x10-3* J sec “Daispersion relation”
v=frequency (s eC'l) (holds 1n vacuum only)
A=wavelength (m)



Maxwell’ s theory

Maxwell showed that E and Y Wavelength A
B fields could sustain
themselves (free from
charges or currents) if they
took the form of an
electromagnetic (EM) wave.

Maxwe”, S theOl'y prediCted 2. E and B are perpendicular to B

each other and to the direction of

that an EM wave WOUId ll'avel.‘Thus an electromagnetic
travel With Speed: wave 18 a transverse wave.
1 : :
Vi, —? nght IS dn
ot electromagnetic

v, =c = speed of light wave!

Animation http://www.walter-fendt.de/ph14e/emwave.htm




Electromagnetic (EM) Waves
 EM waves can travel through 5
empty space (vacuum); no s Yvavelengih.A
medium is necessary! E\

« The speed of light ¢ in empty E
space is

1
C =
V&bl <

= 299,792,458 m/s
c =3x108 m/s

E

e EM waves carry energy and momentum

e The speed is constant so the frequency f is determined by the
wavelength A and speed of light c:
f=clA



Properties of Electromagnetic

Waves
Any electromagnetic wave must satisfy four

basic conditions:

1. The fields E and B and are perpendicular to the
direction of propagation v, .Thus an
electromagnetic wave 1s a transverse wave.

2. E and B are perpendicular to each other in a manner
such that E < B 1s 1n the direction of v,

3. The wave travels in vacuum at speed v, = ¢

4. E = cB at any point on the wave.



Properties of Electromagnetic Waves

The energy flow of an electromagnetic wave is described
by the Poynting vector defined as

— 1 — —
S=—FE X B
Mo
The magnitude of the Poynting vector is
EB E*
S = —= — . P B
Mo Clo I'="0= Save

The intensity of an electromagnetic wave whose electric
field amplitude is E is

Intensity of an electromagnetic wave with field amplitudes E, and B,



Energy and Intensity

| S S=ExH
Summary (free space or isotropic media) E S LE B — ngoE B
| . 2 : Ky
S=—Ex B’ ”S” - Cg()”E” Poynting vector S so 1n free space
Ky
1 t+T S H k
<HSH> = ? MSHdZ Irradiance (or intensity) S has units of W/m?
! B SO 1t represents
energy flux (energy per
* Poynting vector describes flows of E-M power unit time & unit area)

* Power flow is directed along this vector (usually parallel to k)
* Intensity is average energy transfer (i.e. the time averaged Poyning <sin2 (kx— a)t)>

vector: I=<S§>=P/A, where P is the power (energy transferred per |
second) of a wave that impinges on area A. = <cos2 (kx— a)t)> =3
o 6 e By oo | ooy 123985
(S)=1=(E(¢t)xH(¢))] S E = (E’+E) |haleV] Alnm]
-3
cg, =2.654x107A4/V example =1V / m h = 1.05457266 %10 Js
[=2W/m




EXAMPLE: The electric field of a laser beam

A helium-neon laser, the laser commonly used for classroom
demonstrations, emits a 1.0-mm-diameter laser beam with a
power of 1.0 mW. What is the amplitude of the oscillating electric
field in the laser beam?

MODEL The laser beam is an electromagnetic plane wave.

soLVE 1.0 mW, or 1.0 X 1077 J/s, is the energy transported per
second by the light wave. This energy is carried within a 1.0-mm-
diameter beam, so the light intensity 1s

P P 10X107°W
[=—=—= - = 1270 W/m?
A @’ w(0.00050 m)

We can use Equation 35.37 to relate this intensity to the electric
field amplitude:

oo 2 \/ 2(1270 W/m?)
! (3.00 X 108 m/s)(8.85 X 10712 C%/Nm?)




Polarization

(a) y
Plane of

/ polarization

E

Polarization
R is defined

with respect
x to the E-field.

(b)
The wave 1s
moving
y y y
l_)towafd you. | 30°
E i
D = E
Z«B © = e - & E) <
Y Y
Vertical Horizontal Polarization 30°

polarization polarization  from vertical



Polarization & Plane of Polarization

(a) Vertical polarization

e Plane of
E / polarization

E
\ ;

y




A Polarizing Filter

The polymers are parallel to each other.

Polaroid
The electric field Only the cofnponent of
of unpolarized light E perpendicular to the
oscillates randomly polymer molecules

in all directions. 1S transmitted.



Malus’ s Law

Suppose a polarized light wave of intensity /, approaches a
polarizing filter. ¥ is the angle between the incident plane of
polarization and the polarizer axis. The transmitted intensity
is given by Malus’ s Law:

L =l cos0 (incident light polarized)

If the light incident on a polarizing filter is unpolarized, the
transmitted intensity is

| I 510 (incident light unpolarized)

In other words, a polarizing filter passes 50% of unpolarized
light and blocks 50%.



Polarization: Summary

Pa E=Ee™i+ Eyei‘sy)?/_\ /\R VE
Iingar pglarization right circular left circular left elliptical
y-direction polarization polarization polarization

Phase difference

Phase difference = Phase difference =

Phase difference = Q9
900 (1/2, \/4) 1800 (1, A/2)

LA LA
Ex Ex £ A

Z Z x{! 0 0 0 )

z

\

AV




Wave Number, Wave Vector, and Momentum

Chapter 4, Pedrotti*3)

Y
=
Y

(a) (b)

(b)
© 2007 Pearson Prentice Hall, Inc.



Wave equations in a medium

The induced polarization in Maxwell’s Equations yields another term in
the wave equation:

PE E 0’E 1 0°E
=0 2 2 A2 =0
Z at aZ A% at

This is the Inhomogeneous Wave Equation.

The polarization is the driving term for a new solution to this equation.

) 82E 0 I’E 1 82E_0
0z E)t dz° ¢ ot
Homogeneous (Vacuum) Wave Equation
E(z,t)=Re{E "™ C
et} . vt (i) —=n Phase velocity
=3 {Eoe + Eoe } \%

=|E, | cos (kZ — a)t) *Phase velocity can exceed the speed of light in a
dispersive medium where the refractive index n is not
necessarily >1.



Monochromatic plane waves

Plane waves have straight wave fronts
— As opposed to spherical waves, etc.

— Suppose _ ikgr
5 E(r)=E.e L “
E(r,7)=Re{E(r)e™} ~ [ I
=Re{E e“%e ™} \\.& .
i(kgr—ar) T~
=Re{E e }
— E, still contains: amplitude, polarization, phase

— Direction of propagation given by wavevector:

k = (k,.k,,k.) where [k|=27/A=alc ‘ ‘ | ’_H_.

— Can also define

E=(E,E,E) N
— Plane wave propagating in z-direction ///24//\/&

E (Z, l.) — Re {Eoei(kz—a)t)} =1 {Eoei(kz—a)t) + E”(;e—i(kz—a)t)}

Key words: energy, momentum, wavelength, frequency, phase, amplitude...



Spherical waves

A spherical wave is also a solution to Maxwell's equations and is a good model for the
light scattered by a molecule.

Note that k and r are
not vectors here!

|

| E(,l;,t)oc (E, / r)Re{expli(kr —wt)]}

vy LA e  where ks a scalar, and
& s Sy e risthe radial magnitude.

A spherical wave has spherical wave-fronts.

Unlike a plane wave, whose amplitude remains constant as it
propagates, a spherical wave weakens. Its irradiance goes as 1/72.



Young’s double slit interference experiment

order m maxima occur at:

mA=asin@, ~q2n

A



Interference

Michelson Interferometer

E(r)=E "
E(r,)=Re{E(r)e ™}
=Re{E " e}
=Re{E """}

(a)

Source

Consider the Optical Path Difference (OPD) ...
Or simply the superposition of two plane waves

Figure 9.24 The Michelson Interferometer. (a) Circular fringes are cen-
tered on the lens. (b) Top view of the interferometer showing the path
of the light. (c) A wedge fringe pattern was distorted when the tip of a
hot soldering iron was placed in one arm. Observe the interesting per-

E E ik] or, E ikz or, ceptual phenomenon whereby the region corresponding to the iron’s tip
r — 1 e + o) e appears faintly yellow. (Photo by E. H.)

[ =|E(r)}=EXE’

Key words/Topics:
Michelson Interferometer, Dielectric thin film, Anti-reflection coating,
Fringes of equal thickness, Newton rings.



The Michelson Interferometer and Spatial Fringes

Input

* Suppose we misalign the mirrors Mirror
* so the beams cross at an angle

 when they recombine at the beam

e splitter. And we won't scan the delay.

Beam-

splitter Fringes

Mirror
* Ifthe input beam is a plane wave, the cross term becomes:

Re{EO exp|i(mt =Tz cos @ —kxsin Q| E,” exp|—i(@* — Xz cus 9 + kxsin 6’]}

o< Re{exp[—2ikrsin 6]}
. Fringes (in position)
oc coS(2kx sin 6) ]

Crossing beams maps delay
onto position.



Mirror

*Suppose we change one Beam- _
arm’s path length. splitter | Fringes
. : x : Mjrror :
Re{ E, exp[i(@t — kz cos 6 — kxsin 8+ 2kd | E, exp[—i(wt —kz cos O+ kxsin 6]}

o< Re{exp[—2ikxsin 0+ 2kd |}
oc COS(2kx sin @ + 2kd)

Fringes (in position)
/

The fringes will shift in
phase by 2kd.



Michelson interferometers: the compensator plate

Mirror H

So a compensator plate
(identical to the beam
splitter) is usually added
to equalize the path
length through glass.

4

Input
beam

Beam-
splitter

Output
beam

—

Mirror

\ If reflection occurs off the

front surface of beam
splitter, the transmitted
beam passes through
beam splitter three times;
the reflected beam passes
through only once.



Interference Fringes and Newton Rings

Point
source

Figure 9.17 Fringes of equal inclination.

Newton's rings with two microscope slides. The thin film of air between
the slides creates the interference pattern. (Photo by £. H.)

Newton’s Rings
From the figure, ifR»d, then
x2R2-(R-d)* = x*=2Rd

The interference maximum will occur if

1
2nd, =(m+E)A.0

Thus, the radius of the bring rings are

X, = (m+%))..jR

Similarly, the radius of dark rings are

X,= m)\.jR

Quasimonochromatic
point source _,X\
e \Beam splitter
Collimator lens | \

(glass plate)

Optical flat ~ .

Black surface

Figure 9.23 A standard setup to observe Newton's rings

Interference from the thin air film between a convex lens and the flat
sheet of glass it rests on. The illumination was quasimonochromatic.
These fringes were first studied in depth by Newton and are known as
Newton's rings. (Photo by E.H.)



Phase shift on reflection at an interface

Near-normal incidence

_[EOrJ _ m;cost —n, cos 0,

f
. E, n, cos 6, +n, cosb,
p phase shift if n, < n,
r _(EO,J _ 2n,cosb, 0 =0 and 6, =0
== =
. . E . _cos .
0 (or 2p phase shift) if n, > n, o) Mieosb+n cost, )
E, n,cos@ —n, cosb,
E, ), n cost,+n cost, L
[ = Ey | _ 2n; cos 6,
" E, | 1M,cos6,+n,cosb, )
I. Transmission and reflection at a boundary ~ R =
The sketches below show a pulse approaching a boundary between two springs. In one case, the -
pulse approaches the boundary from the left; in the other, from the right. The springs are the
same in both cases, and the linear mass density is greater for the spring on the right than for the
spring on the left. - T =

Before: > Before: <
"éﬁ:%’% /\
Boundary Boundary
After: , After:
Boundary Boundary

Complete the sketches to show the shape of the springs a short time after the trailing edge of the
pulse shown has reached the boundary. Be sure to show correctly (1) the relative widths of the
pulses and (2) which side of the spring each pulse is on. (Ignore relative amplitudes.)

IAJ_ j—

Note: independent of polarization



Diffraction Geometry

We wish to find the light electric field after a screen with a hole in it.
This is a very general problem with far-reaching applications.

Yo  Aperture A(x,,),) Y1
X
% f 0 _-____,_,-—-g’)‘i X1
. P -
Sra=V7Z +(Ze 2) T W,

Observation —
region

TN W
o
o 4
1

-

Incident
wave

This region is assumed to be /v
much smaller than this one.

What is E(x,,y,) at a distance z from the plane of the aperture?



Fraunhofer Diffraction: The Far Field

We can approximate r,, in the denominator by z, and if D is the size of the
aperture, D? >x,> + y,%, so when k D? 2z << 1, the quadratic terms << 1, so
we can neglect them:

n, :\/zz+(x0—xl)2+(yo—yl)2 zz[1+(xo—xl)2/222—|—(y0—y1)2/222}

kry, = kz+k(x§ —2Xx,X, +x12)/2z+k(y§ -2y, +y12)/22

Small, so neglect T T T Independent of x, and y,,
these terms. so factor these out.
. 2 2 .
exp(ikz) L Xty ik
E(x19y1): ) exp| ik €Xp __(xox1+y0y1) E(xo:yo)dxod%
iz 2z z
A(xy,5p)
This condition means going a distance away: z >> kD*/2=nD* /A

IfD=1mmand A=1um, thenz>>3m.



Diffraction Solution

The field in the observation plane, E(x,,y,), at a distance z from the aperture
plane is given by:

E(x,»,2) = J. h(x, — X, V) = Yo, 2)E(Xy, ¥,y) dx, dy,

A(XO»J’O)
1 exp(ikr
where : B(X, = Xy, Y, = V» Z) = ~ p(ikry,)
l Yo
\Spherical
and: v,, = Zz+(x —x)2+( — )2 wave
01 0 M Yo~ M

A very complicated result! And we cannot approximate r,, in the exp by z
because it gets multiplied by k&, which is big, so relatively small changes in r,
can make a big difference!



Fraunhofer Diffraction

We'll neglect the phase factors, and we’ll explicitly write the aperture function
in the integral:

ik

E(xlayl ) oc CXp _;(xoxl +on1) A(xy, y,) E(xy, 3,) dx, dy,

This is just a Fourier Transform! Elxg.y) = constant if a plane wave

Interestingly, it’s a Fourier Transform from position, x,, to another position
variable, x, (in another plane). Usually, the Fourier “conjugate variables” have
reciprocal units (e.g., t & w, or x & k). The conjugate variables here are really x,
and k. = kx,/z, which have reciprocal units.

So the far-field light field is the Fourier Transform of the apertured field!



Diffraction: Summary

Fresnel approximation

Farther out in z, we can approximate the quadratic phase as flat

Huygens-Fresnel integral in rectangular coordinates:

Ay
P(
_—»
o1
z U(x,y)

i

iy

J

(e 2
LT” dednU(E, n)eXP[ffi(xiﬂ'n)}

2 2
. k(& + M max

This region is referred to as the “far-field” or Fraunhofer region.

—

HUE )]
e =

x

I
k:"f-ﬁ" Tz

A

Now this is exactly the Fourier transform of the aperture distribution with

2 2 2,172
rop — [+ (x=8) " +(y-m)]

The Fresnel approximation involves setting: 7, =z in the denominator, and

range of z» 150 meters!

2 2
o1 52[1 + ;l)(’\ _Z'“) + %U _zn) J in exponent {ances,
This 1s equivalent to the paraxial approximation in ray optics.
. exp(jkz - . ik 2 2
e = _%zuf | dzantie, n)exp{zLZ[u- —9 -] } (A)

Let’s examine the validity of the Fresnel approximation in the Fresnel integral. The next higher order
term in exponent must be small compared to 1. So the valid range of the Fresnel approximation is:

"

3 T © 2+ . 2
27 4)L[(x*s) (v =) lmax

A

For field sizes of 1 ecm, & = 0.5um, we find z» 25 cm.

Actually we should look at the effect on the total integral. Upon closer analysis, it is found that the
Fresnel approximation holds for a much closer z. This is referred to as the “near-field region”.

S =

x

A

/,

=X

hz

The Fraunhofer region is farther out. For the field size of 1 ecm, and A = 0.5pm, we find the valid

Again, examining the full integral, Fraunhofer is actually accurate and usable to much closer dis-



Diffraction: single, double, multiple slits

Study Guide: Hecht Ch. 10.2.1-10.2.6 (detailed lengthy discussions),

Fowles Ch. 5 (short but clear presentation), or Lecture Notes " Fieure 10.10 e Fraumboter difcion it

tern of a single slit. This is the irradiance (and ;
not the electric field) distribution :

Single Slit (Ax<Ay = p,<B,)

sinc(B,) changes much faster than sinc(p,)

sin [ ’
1(B)=1(0)
b
kb . b . Java applet — Single Slit Diffraction
f= Esm 0 = ﬂzsm 0 http://www.walter-fendt.de/ph14e/

singleslit.htm




Diffraction: Double and Multiple Slits

(b) 1(6) ©)

A\ Missing order

“Half-fringe”

Figure 10.13 (a) Double-slit geometry. Point P on o is essentially infi-
nitely far away. (b) A double-slit pattern (a = 3b).

sin 3 i sin Ny i 1 1

1(6)=1(0) ,B:Ekbsinﬁ; yzzkasiné?

Nsiny

See also
http://demonstrations.wolfram.com/MultipleSlitDiffractionPattern/ and
http://wyant.optics.arizona.edu/multipleSlits/multipleSlits.htm




Fraunhofer diffraction from
two slits (Fourier Transform)

A(x,) = rect[(x,+a)/w] + rect[(x,-a)/w]

E(x)) o< 73 A4(x,)}

oc sinc[w(kx, / z)/ 2] exp[+ia(kx, / z)]+
sinc[w(kx, / z)/ 2]exp[—ia(kx, / z)]

E(x,) o< sinc(wkx, / 2z) cos(akx, / z)




Diffraction from one- and two-slit screens

Fraunhofer diffraction patterns

One slit

Two slits




Diffraction orders

Because the diffraction angle depends on /,
different wavelengths are separated in the

nonzero orders.

No wavelength
dependence
occurs in zero
order.

The longer the wavelength, the larger its deflection in each nonzero order.



Diffraction Gratings

*Scattering ideas explain what happens when /
a

light impinges on a periodic array of grooves. Scatterer
Constructive interference occurs if the delay
between adjacent beamlets is an integral
number, m, of wavelengths.

Path difference: AB — CD = ml

/ AB = a sin(q,,)

Scatterer

‘ a|sin(@,)—sin(8,)] = m/l‘

CD = a sin(q))
where m is any integer.

A grating has solutions of zero, one, or many values of m, or orders.

Remember that m and g,, can be negative, too.



The Diffraction Grating

Ist order

(m =1)

Oth order
(m=0

57 1t ord

(m=

mth order

\ a
\
T 9, 4
AB — CD = a(sinf,, — sin6,)

Figure 10.28 A transmission grating.

Grating Equation
(Optical Path Difference OPD=m A)
a(sin@, —sin 6. ) =mA

asin@ =mA Normal incidence 6, =0
m

The chromatic/spectral resolving power of a grating

Rziz
AA

m is the order number, and
N is the total number of gratings.

mN



——————

Uniform Rectangular Aperture

Uniform Rectangular Aperture

() Fraunhofer pattern of a square aperture.
(b) The same pattern further exposed to
bring out some of the faint terms.
Photos by E. H.

Figure 10.19 A rectangular aperture.

Figure 10.20 (a) The irradiance distribution for a square aperture. (b) The irradiance

produced by Fraunhofer diffraction at a square aperture. (c) The electricfield distribution
produced by Fraunhofer diffraction via a square aperture. (Phe

tos courtesy R. G. Wilson, llinois

1) =1(0 sin & ’ sin ’

azlkasinﬁ; ,lekbsine
2 2



Uniform Circular Aperture

(b)
(a)

Airy rings using (a) a 0.5-mm hole diameter and (b) a 1.0-mm hole diam-
eter. (Photo by E. H.)

2
2J,(p)
D

1(0)=1 (O)
27

=kRsin@; k=—
Jo, sin 7

A circular aperture

yields a diffracted

kasin®  Figure 10.23 (a) The Airy pattern. (b) Electric field created by
Fraunhofer diffraction at a circular aperture. (c) Irradiance resulting
from Fraunhofer diffraction at a circular aperture. (Photos courtesy R. G.
Wilson, lllinois Wesleyan University.)

"Airy Pattern,"

-8.42
-17.02
-5.14
—-3.83

which involves a

Bessel function.



Change in curvature of wavefronts by a thin lens

© 2007 Pearson Prentice Hall, Inc.



Wave optics of a lens

We have previously seen that light passing through a lens experiences a phase delay given by: - — - - - -
P Y gntp = = P P Ve Y The focal plane amplitude distribution is a Fourier transform of the lens pupil function P(x,y), multi-

2y ‘:2 11 plied by a quadratic phase term. However, the intensity distribution is exactly
o(x,y) = exp|—Jk(n- 1)(“—4)(— - —) (neglecting the constant phase)
’ Rl RZ u
The focal length, f is given by: I = 42 AP ‘;)“2 So~ Ya
T T 1 ‘ 7 V f==
—=(n- 1)(— - —) The “lens makers formula™ oS
S R, R,

. . Example: a circular lens, with radius w
The transmission function is now:

o(x,y) = exp[ifzﬁf(xzﬂlz)}

This 1s the paraxial approximation to the spherical phase

Note: the incident plane-wave is converted to a spherical wave converging to a point at f* behind t

2AWr/ hza

lens (f positive) or diverging from the point at f in front of lens (f negative). P = circ(ﬂ) (qz -4 yz)
' s ) )
( ( ( ( ( ( / let h(r) = FAP(hzyq)] = 7[Circ( ?QH (;~“:112+v“)
e - 4 [ S1@rwr/hzy)
- 3 a E 2 2awr/hz,
- ) )
- 2T J,Q2rwr/hz,) P
wa oy = A {2 el 221

7 AL 22

Diffraction from the lens pupil
The spot diameter is (for an aperture with a radius w,
diameter D).

A Af

Af
The full effect of the lensis ~ U}'(x,y) = o(x, )P(x,y) d=1 '227 = 1'225 = 2'443

Suppose the lens is illuminated by a plane wave, amplitude A. The lens “pupil function” is P(x, y).

The resolution of the lens as defined by the “Rayleigh” criterion is

d/2=06141/6
For a small angle 0,

d/2=0.61/1/sin6?:0.61i
NA



Gaussian Beam Optics

laser

z=0

Gaussian

Z = oo A

planar wavefront ———

profile

;
TWH
R(z)=1z]|1 0
( ) AZ
and
,q1/2
AZ
w(z)=wy|l1+| —
71'“'6

[
planar wavefront / I
J’ _———*-’-———-—j:‘j_—jjjfi__fffifT_—_":-—" -
N i
p'

ie—zrzlw2 F(Az)ﬂ” [ (Z}ﬂ‘”

Gaussian
intensity
profile

maximum curvature

Zp

2
o

w(z) = w0|'1 + J 2)

|

where we have defined a new parameter, called the Rayleigh range,

2

w
w=""7, 3)
which combines the wavelength and waist radius into a single parameter and completely
describes the divergence of the Gaussian beam. Note that the Rayleigh range is the
distance from the beam waist to the point at which the beam radius has increased to

2w, . For a 633 nm red He-Ne laser with a waist of 0.4 mm, z, = 0.8 m.

When z >> Zp, Eq. (2) simplifies to W= WOZ/ZRand the laser beam diverges at a
constant angle

A Review Lab #2

Note that the smaller the Rayleigh range, the more rapidly the beam diverges.



Basic Fourier Optics
(Optional)
You may solve some problems ‘faster’ knowing Fourier
transform. But knowledge of Fourier transform and Fourier
optics is not required for the final exam.



Fourier Transform Notation

There are several ways to denote the Fourier transform of a function.
If the function is labeled by a lower-case letter, such as £,
we can write:

At) => F(w)

If the function is already labeled by an upper-case letter, such as £, we
can write:

r:

E()— 7{EQW)}  E(t)— E(o)



Example: the Fourier Transform of a rectangle function: rect(t)

1/2 1
1
F(w) = j exp(—iax)dt = %[exp(—i wt)]l_/lz/ ) f(t)

—1/2

1 -1/2 1/2
= [exp(—ia)/ 2) — eXp(la)IZ)]

—i
1 expiw/2)—exp(—iar2)

o 7 |
_ sin(ay2)

(r2)

. | i

F(w) =sinc(@r2) Component = 0




The Fourier Transform of a deltafunctionis 1.

Oj: o(t) exp(—ian) dt = exp(—iw[0]) =1

4 1

(1)
=

0 r w

And the Fourier Transform of 1 is 2pad(w): J 1 exp(—iawt) dt =27 O(w)

1 ‘27r6(a))

=

r 0 w




The Fourier transform of exp(iw, ?)

oo

T {explioyt)} = j exp(im, t) exp(—i wt) dt

(o o]
—CQ

_ J exp(—i[@—@,]t) dt = 27 S(w—a,)

—00

1A}
exp(iw,f) F{exp(iw,0)}
Im t
0 # W
Re N /N /\ ol 0 "o
NOZEN TR 7

The function exp(iw,?) is the essential component of Fourier analysis.
It is a pure frequency.



The Fourier transform of cos(w,?)

(o o]

T {cos(wyt)} = J.cos(a)ot) exp(—i @t) dt

%
o0

1

— 5 J. [exp(i @, t) + exp(—i @, t) | exp(—i wt) dt

o0

— %J exp(—i[w—w,]t)dt + %J exp(—i[w+w,]t) dt

—00

= nwo(w—w,) + rwo(w+w,)

4 cos(wyl) “97@{008((()01‘)}

ANV \NVA NN
\/ 0 \_/ A |:> —TWO 0 +TWO -




Scale Theorem

ot ascaeatinion . | 7 U (@)} =F(wla) /|l

Proof: T {f(at)} = _[ F(at) exp(—iwr) dt

Assuming a > 0, change variables: u = at

T {f(at)} = Oj f(u) exp(—iw[ul/al)du / a

= Jf(u) exp(—i [w/a]u)du / a

- F(wla)/ a

If a < 0, the limits flip when we change variables, introducing a
minus sign, hence the absolute value.



) Fw)

, ‘
The Scale Short
o
Theorem pulse =
in action e 7

The shorter

th | Medium-
e puise, length E>
the broader pulse X X
t

the spectrum!

R,

A

This is the essence Long
of the Uncertainty

pulse :>
Principle! A >
4




The Fourier Transform of a sum of two functions

1 A

~——7 N—"
t w

G(w)

g(t) o>

Tlaf@)+bg)}= | == AN~

a7 {f ()} +b7 {g(t);
C> F(w) +
l Ab)+g(0) \ \G(KV)

Also, constants factor out. ¢




Shift Theorem

The Fourier transform of a shifted function, 7 (r—a):

‘?/7@ { f(t— a)} =exp(—iwa)F(w)

Proof :

Tf(t-a)l= j F(t—a)exp(—iar)dt

Change variables: u=t-a

]° fu)exp(—iafu +a])du

= exp(—iwa) T f(u)exp(—iawu)du

= exp(—iwa)F(w)



Fourier Transform with respect to space

If f{x) is a function of position, A
F(k)=[_ f(x) exp(-ikr) dx
T )} = F(k) ﬂ
We refer to k as the spatial frequency. -

Everything we've said about Fourier transforms between the r and w
domains also applies to the x and £ domains.



The 2D Fourier Transform

FOYx)} = Flk,k)

_ j i) explithx+h,y)] d dy

It f(x.y) = 1,0 £,(0),

then the 2D FT splits into two 1D FT's.

But this doesn’t always happen.

fxy)




