Scalar Diffraction Theory and Basic Fourier Optics
[Pedrotti Ch. 11, Ch. 12 and Ch. 21]

Scalar Electromagnetic theory:

u(P,r)y = Re[U(P)ej m] monochromatic wave

P :position f:time ® = 27nv :optical frequency
u(P, t) represents the £ or H field strength for a particular transverse polarization component

U(P) : represents the complex field amplitude
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Diffraction:
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Screen

Approximations:

1. We impose the boundary condition on U, that U = 0 on the screen.
2. The field in the aperture X is not affected by the presence of the screen.

] B ] exp(jkry;)

L(Po)fj—_)b”b(Pl) 0 ds
expanding
spherical

[ro; » 2]

This equation expresses the Huygens-Fresnel principle: The observed field is expressed as a superpo-
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Fresnel approximation

Huygens-Fresnel integral in rectangular coordinates:
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The Fresnel approximation involves setting: r,, =z in the denominator, and
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This is equivalent to the paraxial approximation in ray optics.
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Let’s examine the validity of the Fresnel approximation in the Fresnel integral. The next higher order
term in exponent must be small compared to 1. So the valid range of the Fresnel approximation is:
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For field sizes of 1 em, A = 0.5um , we find z » 25 em.

Actually we should look at the effect on the total integral. Upon closer analysis, it is found that the
Fresnel approximation holds for a much closer z. This is referred to as the “near-field region”.

Farther out in z, we can approximate the quadratic phase as flat
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This region is referred to as the “far-field” or Fraunhofer region.
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Now this is exactly the Fourier transform of the aperture distribution with
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The Fraunhotfer region is farther out. For the field size of 1 cm, and % = 0.5um. we find the valid
range of z» 150 meters!

Again, examining the full integral, Fraunhofer is actually accurate and usable to much closer dis-
tances.



Examples
A rectangular aperture, illuminated by a normally incident plane wave:
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With plane wave illumination, we have: U(E,n) = 7,(&, 1)
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The width of the central lobe of the diffraction pattern is
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For a circular aperture with radius w: ¢, = circ 4 =E"+ radial coordinates
p A W q S r]

In circular coordinates, we use the Fourier - Bessel transform:  7{U(g)} gives immediately:
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d=1 227 diameter of Airy disk

An alternative approach:

To calculate the diffraction pattern of a circular aperture, we can choose y as the variable of
integration. If R (w in the above figure) is the radius of the aperture, then the element of area is
taken to be a strip of width dy and length 2,/R* — )* .

The amplitude distribution of the diffraction pattern is then given by
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We introduce the quantities u and p defined by u=y/R and p =kRsin(6). The integral then

becomes
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This is a standard integral. Its value is 7z.J, (p)/ p where J; is the Bessel function of the first

kind, order one. The ratio J, ( p) /p %% as p — 0. The irradiance/intensity distribution is

14Up=1, {—N‘ (p)T.
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The diffraction pattern is circularly symmetric and consists of a bright central disk surrounded by
concentric circular bands of rapidly diminishing intensity. The bright central area is know as the
Airy disk. It extends to the first dark ring whose size is given by the first zero of the Bessel
function, namely, p =3.832. The angular radius of the first dark ring is thus given by

sing= 3.832 :l 224 iy
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which is valid for small values of 6 (in radians). Here D=2R is the diameter of the aperture.

therefore given by



Diffraction grating (transmission)

T sinusoidal amplitude
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m: peak to peak amplitude change 0<m<1

fp: grating spatial frequency
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We have neglected interference terms between orders.
Compared to the square aperture, which has the central peak with intensity I,, we now have:
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The “resolving power” of the grating R= peak separation aration
peak width
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Wave Optics of Lenses
Set of rays parallel to axis Plane Wave
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Rays converging to a focus converging spherical wave

At a given z-plane, the spherical wave has constant phase around circles. The form of the spherical
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:| for a spherical wave converting to the point z, on the axis. A lens modifies

the wave front, for example from planar to spherical.
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How does this happen?



Optical Path Difference

Optical waves travel more slowly in the glass since » > 1. In glass, the wave is delayed by an amount

as if it travelled a distance #/ in free space. If 7 = I(x.y) [or » = n(x,y) ] then the delay varies with
(x,y) so the wavefront gets distorted.

We can analyze the lens in terms of its phase-delay. The light propagates in the glass as
cos(knz) = cos¢ , where ¢ = knz 1s the phase delay.

In propagating from plane P, to P,, the light travels a distance A= A, + A, in the glass and a distance

A, — A in air, where A, 1s the thickness at the thickest part of the lens. The phase delay depends on

(X, ¥):

O(x,¥) = knA(x,y) + k[Ao — A(X, V)]

= kAo +k(n—1)A(x,y)

We can calculate A, assuming spherical surfaces. Recall the sign convention for the surface radii:
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In the paraxial approximation (x” +y ) « R} ,. 50

, thus

This gives a phase delay:

O(x, V)= kAo + k(n - 1)[AO_(X2 +-V'2j(L__1)]

Apart from the constant delay knA., the phase delay is:
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A plane wave incident on the lens has a constant phase. After passing through the lens, the phase is
oiven ahove. This has the form of a snherical wave. conversine to a noint at a distance 7. where

}=(n—1)[R—ll—é) ,

/1s the focal length of the lens. This expression is identical to what we found from the ray optics anal-
ysis.



Diffraction Theory of a Lens

We have previously seen that light passing through a lens experiences a phase delay given by:
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o(x,y) = exp {—jk(i? - 1)(%“—) (Ri - RL)} (neglecting the constant phase)
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The focal length, f* is given by:

T T

=(n— 1)(L - —) The “lens makers formula”
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The transmission function is now:

0x.2) = exp =g 7 )]

This 1s the paraxial approximation to the spherical phase

Note: the incident plane-wave is converted to a spherical wave converging to a point at /* behind the
lens (f positive) or diverging from the point at / in front of lens (f negative).
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Diffraction from the lens pupil

Suppose the lens is illuminated by a plane wave, amplitude A. The lens “pupil function” is P(x, y).

The full effect of the lens is ~ Uj/(x, ) = o(x, »)P(x, )
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We now use the Fresnel formula to find the amplitude at the “back focal plane” z =f
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The phase terms that are quadratic in x~ +y~ cancel each other.
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This 1s precisely the Fraunhofer diffraction pattern of P ! Note that a large z criterion does not apply

here.



The focal plane amplitude distribution is a Fourier transform of the lens pupil function P¢x,y), multi-

plied by a quadratic phase term. However, the intensity distribution is exactly
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Example: a circular lens, with radius w
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The spot diameter is d =1 .22—f =1 .225
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The resolution of the lens as defined by the “Rayleigh” criterionis ¢ /2=0.611/6.For a

small angle 0, ¢ /2=0.614/sin@ = 0.611.
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