Hubble Telescope

It was probably the most precisely figured
mirror ever made, with variations from the
prescribed curve of only 10 nanometers. It was
too flat at the edges by about 2.2 microns.

Source: wikipedia




When Paraxial Approximation Fails:

Ray Tracing + Diffraction

Exact ray-tracing

e

ray scatter diagram ( < defocus)

*Databases of common lenses and elements
*Simulate aberrations and ray scatter diagrams for
various points along the field of the system (PSF,
point spread function)

*Standard optical designs (e.g. achromatic doublet)

*Permit optimization of design parameters (e.g.
curvature of a particular surface or distance between
two surfaces) vs designated functional requirements
(e.g. field curvature and astigmatism coefficients)

*Also account for diffraction by calculating the at
different points along the field modulation transfer
function (MTF) [Fourier Optics]



Numerical Aperture

O: half-angle subtended by the
imaging system from
an axial object

medium of

refr. index n .
Numerical Aperture
(NA) =n sinB

Speed ({/#)=1/2(NA)
pronounced f-number, e.g.
/8 means (/#)=8.

Paraxial approximation

. Aperture stop
S (0) ~ tan (6) ~0 the physical element which
D/2 1 limits the angle of acceptance of

— NA 7 =5 T the 1imaging system

The spatial resolution limit due to diffraction = 1.22xf A /D=0.61xA/NA [Rayleigh Criterion].



Thin Lenses = Thick Lenses

- f 5 Paraxial approximation

N sin(@) = tan(6) =0
S .- oS cos(0)=1

! ~~_—" Focal point

Review the following equations in Ch. 2.
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“Sign” convention is of paramount importance!
(See Pedrotti*3, Table 2-1)



Ray and Wave Aberrations
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A Ray Aberrations:
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Aberrations (a brief description)

Chromatic
— 15 due to the fact that the refractive index of Refractive index n is dispersive!
lenses, etc. varies with wavelength: therefore, . (0))

focal lengths, 1maging conditions, etc. are
wavelength-dependent

Geometrical (monochromatic)

— are due to the deviation of non-paraxial rays

Third-order or Seidel aberrations
Deteriorate the image:
*Spherical aberration

from the approximations we have used so far to  «coma

derive focal lengths, 1maging conditions, etc.: «Astigmatism
therefore, rays going through 1maging systems

typically do not focus pertectly but instead Deform the image:
scatter around the “paraxial” (or “Gaussian™) *Field curvature
focus *Distortion

Departures from the idealized conditions of Gaussian Optics (e.g. paraxial regimes).
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;; sin(go) ~ tan(go) =
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The Five monochromatic, or Seidel, Aberrations

The aberration at Q

a(Q)=(PQI-POI),

opd: the optical-path difference

p Spherical aberration
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Lens Aberrations
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Chromatic Aberration

Pedrotti*3, Ch. 3-2 & Ch. 20-7
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Chromatic Aberration

Achromatic doublet

Solutions:

1. Combine lenses (achromatic doublets)
2. Use mirrors
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Figure 1.21 Longitudinal chromatic aberration
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Spherical Aberration

Spherical Aberration
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Figure 1.15 Spherical aberration of a plano-convex lens mirror mirror

Solution I: Aspheric Mirrors or Lenses



Hubble Telescope

It was probably the most precisely figured
mirror ever made, with variations from the
prescribed curve of only 10 nanometers, it was
too flat at the edges by about 2.2 microns.

Source: wikipedia
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Lens Shape

Solution II: Chose a proper shape of a singlet lens for a given

image-object distance. L o) li B L]
, 5 =7l
For a given desired focal length, there is freedom to choose one of the radii 1 i
for a singlet. The spherical aberration and coma depend on the particular (R +R )
choice, so these aberrations can be minimized by the designed form. q= 1 2
(R, —R)
5
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Figure 1.23 Aberrations of positive singlets at infinite conjugate ratio as a function of shape



Lens Selection Guide
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Astigmatism
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Figure 1.16 Astigmatism represented by sectional views



Coma and Deformation
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Figure 1.19 Field curvature
Figure 1.20 Pincushion and barrel distortion



