Terrestrial planets—14 Jan

- Homework 1 is due on Fri, 21 Jan.
 - Download it from angel
- Observations
- Gravitational heating

Mercury

- What do you see? What is unusual?
- What does that tell you about Mercury's history?

Venus

- What is this?
- What does this tell you about Venus' history?

"Pancake" volcanoes, due to very thick lava

 What does the Valles Marineris tell you about the history of Mars?

Mars

Rotating Mars

Valles Marineris

200km wide. 7km deep

The surface of Venus

- Age dating of surface
 - Only 15% as many craters as lunar maria.

Imaging.

- Oldest terrain only 800 million yrs old
 - compare to 3.8 billion yr on Earth
- Constant resurfacing by volcanic action.
 - Ceased ~ 500 million yr ago

How are heating and meteors related?

- We have seen craters, volcanoes, lava flows, and cracks.
 - Volcanoes, lava flows, and cracks indicate heat.
 - Cratering history indicates meteors were much more frequent in the early history of the solar system.
 - How are heating and meteors related?

What is the temperature of a meteor?

- Meteors carry energy. What is its temperature?
- The gravitational potential energy

$$PE = -GMm/R$$

- M is mass of earth
- -m is mass of meteor
- R is distance from center of Earth
- G is Newton's gravitational constant, 6.67×10⁻¹¹ m³kg⁻¹s⁻²

How to read math

• The gravitational potential energy

PE = -GMm/R

- M is mass of earth
- *m* is mass of meteor
- R is distance from center of Earth
- G is Newton's gravitational constant
- Ask yourself
 - What does potential energy depend on?
 - If the mass doubles, the potential energy _____.
 - How does potential energy depend on distance from the center of Earth? What is it at $R=\infty$? At small R?
 - What are constants and important only when I compute a number?

How to read math

- 1. If the mass of a meteor doubles its potential energy
 - A. Doubles
 - B. Halves
 - C. Does not change
- 2. Close to earth, the potential energy of a meteor
 - A. Is close to zero
 - B. Is large and positive
 - C. Is large and negative

Kinetic energy

• The kinetic energy is

$$KE = \frac{1}{2}mv^2$$

- M is mass of meteor
- v is speed
- When a meteor falls, its total energy (PE+KE) does not change. The meteor moves faster by

$$KE_{later} - KE_{earlier} = -PE_{later} + PE_{earlier}$$

A meteor falls from a large distance

$$KE_2 - KE_1 = -PE_2 - PE_1$$

• Assume meteor moves very slowly when it is at a large distance. $KE_1 = 0$.

$$PE_1 = 0$$

$$KE_2 = -PE_2$$

$$v^2 = 2GM_{earth}/R$$

• Answer: A meteor falls from to earth a great distance. Its speed is 11.2km/s.

How are energy and temperature related?

- If all of the kinetic energy is converted to heat, then the temperature T is found from
- $KE = \frac{3}{2}NkT$
 - N is number of particles in the meteor
 - T is temperature
 - K is Boltzmann's constant, $1.3806503 \times 10^{-23}$ m² kg s⁻² K⁻¹

What is the temperature of a meteor?

• A meteor falls to earth, and all of its energy is converted to heating up the meteor. Assume it is made of iron. What is its temperature?

$$KE = \frac{3}{2}NkT$$
$$\frac{1}{2}mv^2 = \frac{3}{2}NkT$$

- 1. Does the temperature depend on the mass of the meteor?
 - Α.
 - B. N
- If the meteor is made of calcium, is the temperature higher or lower?
 - A. Higher
 - B. Lower

What is the temperature of a meteor?

- A meteor falls to earth, and all of its energy is converted to heating up the meteor. Assume it is made of iron. What is its temperature?
- Answer: 290,000K
- What conclusions can we draw about the history of the terrestrial planets from the calculation of the temperature of the meteor?