PHY321 Homework Set 1

1. [5 pts] Expand $\sin x$ about the point $x=\pi / 4$. Hint: Represent the function as $\sin x=\sin (y+\pi / 4)$ and assume y to be small.
2. [5 pts] For the two vectors

$$
\vec{A}=\hat{i}-\hat{j}+2 \hat{k}, \quad \text { and } \quad \vec{B}=-2 \hat{i}+\hat{j}+3 \hat{k},
$$

find
(a) $\vec{A}-\vec{B}$ and $|\vec{A}-\vec{B}|$,
(b) component of \vec{B} along \vec{A},
(c) angle between \vec{A} and \vec{B},
(d) $\vec{A} \times \vec{B}$,
(e) $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$.
3. [10 pts] Coordinates of a particle moving in the $x-y$ plane change with time t according to:

$$
x(t)=2 \mathrm{~m}+2 \mathrm{~m} / \mathrm{s} \cdot t, \quad y(t)=3 \mathrm{~m}+4 \mathrm{~m} / \mathrm{s}^{3} \cdot t^{3}
$$

where t is in seconds and coordinates are in meters.
(a) Obtain the equation of the trajectory $y=y(x)$ for the particle. Draw the trajectory within the region $0 \leq x \leq 4$ and $-1 \leq y \leq 7$.
(b) Obtain the velocity components $v_{x}(t)$ and $v_{y}(t)$ as well as the magnitude of the velocity $v(t)$. For $t=-0.5,0$ and 0.5 s , mark particle locations on the trajectory and the velocity vectors as arrows.
(c) Obtain the components of the acceleration $a_{x}(t)$ and $a_{y}(t)$ as well as the magnitude of the acceleration $a(t)$. Indicate the acceleration vectors with arrows by the trajectory, for $t=-0.5,0$ and 0.5 s .
(d) Obtain the components of the acceleration along $a_{\|}(t)$ and perpendicular $a_{\perp}(t)$ to the trajectory. Hint: Using \vec{v}, construct unit vectors tangential $\hat{u}_{\|}$and perpendicular \hat{u}_{\perp}. The parallel and perpendicular components of the acceleration may be then found from $a_{\|}=\vec{a} \cdot \hat{u}_{\|}$and $a_{\perp}=\vec{a} \cdot \hat{u}_{\perp}$.
(e) Discuss the behavior of the components $a_{\|}$and a_{\perp} with time in the context of the shape of the trajectory.
4. [10 pts] For a hill the elevation in meters is given by $z=10+0.5 x+0.25 y+0.5 x y-$ $0.25 x^{2}-0.5 y^{2}$, where x is the distance east and y is the distance north of the origin.
(a) Where is the top of the hill and how high is it?
(b) How steep is the hill at $x=y=1$, i.e. what is the angle between a vector perpendicular to the hill and the z axis?
(c) In which compass direction is the slope at $x=y=1$ steepest? Indicate whether the angle you provide is the angle measured in the standard way in the counterclockwise direction from x-axis (east) or whether it is the compass azimuth. The compass azimuth is normally measured in the clockwise direction from north.
5. [10 pts] Consider action of two forces, $\vec{F}^{A}(\vec{r})$ and $\vec{F}^{B}(\vec{r})$, on a particle. These forces depend on particle position \vec{r} and their components are given by

$$
F_{x}^{A}=F_{x}^{B}=y^{2}, \quad F_{y}^{A}=2 x y, \quad F_{y}^{B}=x y, \quad F_{z}^{A}=F_{z}^{B}=0,
$$

where the force components are in newtons and coordinates are in meters.
(a) Compute the work in joules done by the two forces, $W^{A}=\int \vec{F}^{A} \cdot \mathrm{~d} \vec{r}$ and $W^{B}=$ $\int \vec{F}^{B} \cdot \mathrm{~d} \vec{r}$, on the particle moving within the $x-y$ plane along a parabolic trajectory $y=x^{2}$ from $(x, y)=(0,0)$ to $(x, y)=(1,1)$. The coordinates in the equation for the trajectory are in meters. Hint: Under the integral write $\vec{F}^{A} \cdot \mathrm{~d} \vec{r}=$ $F_{x} \mathrm{~d} x+F_{y} \mathrm{~d} y=\left(F_{x}+F_{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \mathrm{d} x$ and carry out integration over x.
(b) Compute the work in joules done by the two forces, on the particle moving along another trajectory joining $(0,0)$ and $(1,1)$ and consisting of two straight at right angles to each other, first at constant y to $(x, y)=(1,0)$ and then at constant x to $(1,1)$. Compare the results to those obtained in 5a. Hint: Sketch the trajectory.
(c) Calculate the curl of the two forces.
(d) Discuss difference in the nature of the two forces in the context of the results in $5 \mathrm{a}, 5 \mathrm{~b}$ and 5 c . Can you find potential energy associated with either of the forces?

