PHY321 Homework Set 5

- 1. [5 pts] A uniform rope of mass M and length L is hung off a small peg. The rope can slide without friction over the peg.
 - (a) With x denoting the length of rope hanging to the right of the peg, obtain an equation of motion for x(t).
 - (b) Solve the equation of motion, if an x_0 -stretch of the rope hangs to the right of the peg at t = 0 and the rope is then at rest. How does the fate of the rope depend on whether $x_0 > L/2$ or $x_0 < L/2$?
 - (c) Find the time t_f that it takes for the rope to fall off the peg. How does this time depend on M?
- 2. [5 pts] A massless spring hangs down from a support, with its lower end at y = 0, where the *y*-axis is vertical and points down. When a small unknown mass is attached to the spring, the lower end of the spring moves down to a position y_0 for the mass being in equilibrium.
 - (a) Demonstrate that when the mass is pulled down to a position $y = y_0 + A$ and released from rest, it will execute a simple harmonic motion around y_0 .
 - (b) Express the period of oscillations of the mass in terms of y_0 and g.
- 3. [5 pts] [adapted from Graduate School qualifying exam] A large axially symmetric cylinder of length L, cross-sectional area A and of average density ρ is floating with its axis vertical, in a fluid of density ρ_0 , $\rho_0 > \rho$.

(a) Determine the frequency ν_0 of small-amplitude vertical oscillations of the cylinder. Note: Effects of viscosity and fluid adhesion and cohesion may be ignored.

X

0 y₀

- (b) Compute the frequency for $\rho_0 = 1.00 \text{ g/cm}^3$, $\rho = 0.80 \text{ g/cm}^3$ and L = 3.0 cm.
- 4. [5 pts] Two masses m_1 and m_2 , connected by a massless spring of neutral length x_0 , move freely along the x-axis. For small changes in spring's length, the force produced by the spring is proportional to the change in length, with the coefficient of proportionality k.
 - (a) Rely on the third Newton's law and demonstrate directly that the center of mass for m_1 and m_2 moves at constant velocity.

- (b) Further, rely on the third Newton's law and demonstrate that for separations close to x_0 , the masses execute a simple harmonic motion in their separation. Obtain the angular frequency ω_0 of small oscillations of the masses in relative distance.
- 5. [5 pts] A simple harmonic oscillator consists of a m = 15 g mass attached to a spring with spring constant of k = 4.0 N/m. The mass is displaced by A = 3 cm and released from rest.
 - (a) Determine the anticipated natural frequency ν_0 and period T_0 for the motion,
 - (b) the total energy,
 - (c) and the anticipated maximum speed.
 - (d) In the actual measurement of the system, the amplitude of the oscillations is found to decrease to half of the original value after 8.0 s. Determine the parameter β for this motion.
 - (e) Find the frequency ν_1 for the damped motion and compare it to the anticipated frequency ν_0 .
 - (f) Find the decrement of the damped motion, i.e. the fraction by which the amplitude decreases during one period of motion.
- 6. [5 pts] A particle of mass m moves in one dimension under the influence of a force for which the potential energy is a periodic function of position x:

$$U(x) = U_0 \cos^2\left(\frac{\pi x}{2\ell}\right).$$

For a net energy $0 < E < U_0$, the particle is trapped in the vicinity of one of the minima of the potential energy and its motion is periodic in time.

- (a) Relying on the second Newton's law, obtain an equation of motion for the particle.
- (b) Consider the case of motion where the maximum displacement A of position from one of the minima is small compared to ℓ and expand the force to the lowest order in the displacement of the particle.
- (c) Find an approximate period of motion T_0 of the particle when the maximum displacement is small. Does that period depend on A?
- (d) What is the maximal percentage error in the force when employing the expansion 6b, for $A = 0.1\ell$? What magnitude of percentage error do you correspondingly expect in the period T_0 obtained using the expansion 6b, as compared to the real period T for the particle? If the period T for a given amplitude A were expanded in the powers of A/ℓ , what kind of powers would you expect in the expansion?