PHY321 Homework Set 7

1. [10 pts] Consider a driven harmonic oscillator for which the equation of motion is

$$m\ddot{x} = -kx - b\dot{x} + F_0\cos\omega t.$$

(a) Given the stationary solution to the equation

$$x(t) = D\cos\left(\omega t - \delta\right)$$

where D and δ are functions of ω , find the instantaneous $P_{\rm drv}(t) = F_{\rm drv} \dot{x}$ and average power $\langle P_{\rm drv} \rangle$ delivered by the driving force $F_{\rm drv} = F_0 \cos \omega t$. Simplify the results as much as possible, in particular attempting to separate the oscillating from constant terms in $P_{\rm res}(t)$ and to illuminate the dependence on the phase shift δ .

- (b) Find the instantaneous $P_{\rm res}(t) = F_{\rm res} \dot{x}$ and average power $\langle P_{\rm res} \rangle$ lost to the resistance force $F_{\rm res} = -b \dot{x}$. Again, simplify the results as much as possible. Do the powers associated with the driving and resistance forces balance each other, whether instantaneously or on the average?
- (c) For what angular frequency ω is the average rate of energy transfer from driving to resistance force the maximal? What is the phase shift δ then?
- 2. [5 pts] Consider mass m attached by two identical springs, of spring constant k, to the rigid supports separated by distance of 2ℓ , as shown in the figure. The neutral length for each spring is $d < \ell$.
 - (a) What is the potential energy U(x) for this system? Make a sketch of U(x), assuming $d \sim \ell/2$. Make any characteristic features of U(x) explicit.
 - (b) Expand the potential energy for small $x \ll \ell$, retaining one nonvanishing term beyond quadratic.
 - (c) What kind of nonlinearity is present in this system? How is such a system termed?
 - (d) Obtain a returning force from the expanded energy.
 - (e) Sketch phase diagrams for 3 energies of progressively increasing magnitude, illustrating transition from linear to nonlinear regime for this system.

3. [5 pts] A particle of mass m moves in one dimension under the influence of a conservative force for which the potential energy U(x) is shown in the figure. Sketch phase diagrams for the 5 energies of the particle, indicated in the figure. Mark which phase diagram is for which energy.

4. [5 pts] A plane pendulum consisting of a mass m attached to a massless rod of length ℓ starts from rest at an angle θ_0 . Given that the pendulum spends quarter of its period moving between angles $\theta = 0$ and $\theta = \theta_0$, the period can be calculated from

$$\frac{T}{4} = \int_0^{T/4} \mathrm{d}t = \int_0^{\theta_0} \frac{\mathrm{d}t}{\mathrm{d}\theta} \,\mathrm{d}\theta$$

- (a) Use energy conservation to obtain $d\theta/dt$ as a function of θ for a given θ_0 . Use this result under the integral above to arrive at an integral expression for the period T as a function of the maximal angle θ_0 . Comment on the presence or absence of the dependence of T on m, ℓ and θ_0 .
- (b) Use a small-angle expansion in the subintegral function, to arrive at the period in the limit $\theta_0 \to 0$. Does your result agree with that from solving the equation of motion in the small-angle approximation? Systematic corrections to the latter period, in powers of θ_0 , may be arrived at by employing Taylor-expansions in the subintegral function of the expression obtained in 4a. Useful integral: $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x$.
- 5. [5 pts] Consider the mapping function $x_{n+1} = \alpha \sin(\pi x_n)$. Here, α is a constant characteristic for the map, x is restricted to the range 0 < x < 1 and the argument of the sine is in radians.
 - (a) What is the asymptotic value of the mapping function when $\alpha = 0.6$? Depending on your starting value, the asymptotic value should be reached, to a very good approximation, in ~ 10 iterations or less.
 - (b) What are the *two* asymptotic values for the mapping function when $\alpha = 0.73$?