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Introduction to Classical Mechanics
VIDEO LECTURES: 1-1 1-2 1-3 1-4 1-5

1 HISTORY

Isaac Newton solved the premier scientific problem of his day, which was to explain
the motion of the planets. He published his theory in the famous book known
asPrincipia. The full Latin title of the book1 may be translated into English as
Mathematical Principles of Natural Philosophy.

The theory that the planets (including Earth) revolve around the sun was pub-
lished by Nicolaus Copernicus in 1543. This was a revolutionary idea! The picture
of the Universe that had been developed by astronomers before Copernicus had the
Earth at rest at the center, and the sun, moon, planets and stars revolving around
the Earth. But this picture failed to explain accurately the observed planetary posi-
tions. The failure of the Earth-centered theory led Copernicus to consider the sun
as the center of planetary orbits. Later observations verified the Copernican theory.
The important advances in astronomical observations were made by Galileo and
Kepler.

Galileo Galilei was perhaps the most remarkable individual in the history of
science. His experiments and ideas changed both physics and astronomy. In
physics he showed that the ancient theories of Aristotle, which were still accepted
in Galileo’s time, are incorrect. In astronomy he verified the Copernican model of
the Universe by making the first astronomical observations with a telescope.

Prof. Daniel Stump
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1Philosophiae Naturalis Principia Mathematica
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Galileo did not invent the telescope but he made some of the earliest telescopes,
and his telescopes were the best in the world at that time. Therefore he discovered
many things about the the solar system and stars:

• craters and mountains on the moon

• the moons of Jupiter

• the phases of Venus

• the motion of sunspots

• the existence of many faint stars

These discoveries provided overwhelming evidence in favor of the Copernican
model of the solar system.

Johannes Kepler had extensive data on planetary positions, as functions of time,
from observations collected earlier by Tycho Brahe. He analyzed the data based on
the Copernican model, and deduced three empirical laws of planetary motion:

Kepler’s Laws

1. The planets move on elliptical orbits with the sun at one focal point.

2. The radial vector sweeps out equal areas in equal times.

3. The square of the period of revolution is proportional to the cube of the
semimajor axis of the ellipse.

Newton started with the results of Galileo and Kepler. His goal, then, was to
explain why.Why do the planets revolve around the sun in the manner discovered
by Galileo and Kepler? In particular, what is the explanation for themathematical
regularities in Kepler’s laws of orbital motion? To answer this question, Newton
had to develop the laws of motion and the theory of universal gravitation. And, to
analyze the motion he invented a new branch of mathematics, which we now call
Calculus.

The solution to planetary motion was published inPrincipia in 1687. Newton
had solved the problem some years earlier, but kept it secret. He was visited in
1684 by the astronomer Edmund Halley. Halley asked what force would keep the
planets in elliptical orbits. Newton replied that the force must be an inverse-square
law, which he had proven by mathematical analysis; but he could not find the paper
on which he had written the calculations! After further correspondence, Halley
realized that Newton had made great advances in physics but had not published the
results. With Halley’s help, Newton publishedPrincipia in which he explained his
theories of motion, gravity, and the solar system.
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After the publication ofPrincipia, Newton was the most renowned scientist
in the world. His achievement was fully recognized during his lifetime. Today
scientists and engineers still use Newton’s theory of mechanics. In the 20th century
some limitations of Newtonian mechanics were discovered: Classical mechanics
breaks down for extreme speeds (approaching the speed of light) and at atomic
dimensions. The theory of relativity, and quantum mechanics, were developed
in the early 20th century to describe these cases. But for macroscopic systems
Newton’s theory is valid and extremely accurate.

This early history of science is quite relevant to the study of calculus. New-
ton used calculus for analyzing motion, although he published the calculations in
Principia using older methods of geometrical analysis. (He feared that the new
mathematics—calculus—would not be understood or accepted.) Ever since that
time, calculus has been necessary to the understanding of physics and its applica-
tions in science and engineering. So our study of mechanics will often require the
use of calculus.
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2 POSITION, VELOCITY, AND ACCELERATION

2.1 Position and velocity

Suppose an object M moves along a straight line.2 We describe its motion by
giving the positionx as a function of timet, as illustrated in Fig. 1. The variable
x is thecoordinate, i.e., the displacement from a fixed point0 called theorigin.
Physically, the line on which M moves might be pictured as a road, or a track.
Mathematically, the positions form a representation of the ideal real line. The
coordinatex is positive if M is to the right of0, or negative if to the left. The
absolute value|x| is the distance from0. The possible positions of M are in one-
to-one correspondence with the set of real numbers. Hencepositionis a continuous
functionx(t) of the independent variablet, time.

Figure 1: An example of po-
sition x as a function of time
t for an object moving in one
dimension. The object starts at
rest at the origin att = 0, be-
gins moving to positivex, has
positive acceleration for about
1 second, and then gradually
slows to a stop at a distance of
1 m from the origin.

Example 2-1.What is the position as a function of time if M is at rest at a point
5 m to the left of the origin?

Solution. Because M is not moving, the functionx(t) is just a constant,

x(t) = −5 m. (1)

Note that the position has both a number (−5) and a unit (m, for meter). In this
case the number is negative, indicating a position to the left of0. The number
alone is not enough information. The unit is required. The unit may be changed by
multiplying by a conversion factor. For example, the conversion from meters (m)
to inches (in) is

5 m = 5 m× 38 in
1 m

= 190 in. (2)

(There are 38 inches per meter.) So, the position could just as well be written as

x(t) = −190 in. (3)

Equations (3) and (1) are equivalent. This example shows why the number alone
is not enough: The number depends on the unit.

2We’ll call the moving object M. The letter M could stand for “moving” or “mass.”



PHY 321 5

A Comment on Units of Measurement. In physical calculations it is important
to keep track of the units of measurment—treating them as algebraic quantities.
Dropping the unit will often lead to a failed calculation. Keeping the units has a
bonus. It is a method of error checking. If the final unit is not correct, then there
must be an error in the calculation; we can go back and figure out how to correct
the calculation.

Example 2-2. A car travels on a straight road, toward the East, at a constant
speed of 35 mph. Write the position as a function of time. Where is the car after 5
minutes?

Solution. The origin is not specified in the statement of the problem, so let’s say
thatx = 0 at timet = 0. Then the position as a function of time is

x(t) = +
(

35
mi
hr

)
t, (4)

where positivex is east of the origin. Equation (4) is based on the formula

distance = speed× time,

familiar from grade school; or, taking account of the signs,

displacement = velocity× time.

Any distance must be positive. ‘Displacement’ may be positive or negative. Simi-
larly, ‘speed’ must be positive, but ‘velocity’ may be positive or negative, negative
meaning that M is moving to smallerx.

After 5 minutes, the position is

x(5 min) = 35
mi
hr
× 5 min

= 35
mi
hr
× 5 min× 1 hr

60 min
= 2.917 mi. (5)

(We multiply by the conversion factor,1 hr/60 min, to reduce the units.) The
position could be expressed in feet, as

x(5 min) = 2.917 mi× 5280 ft
1 mi

= 15400 ft. (6)

So, after 5 minutes the car is 15400 feet east of its initial position.

? ? ?

It is convenient to record some general, i.e., abstract formulas. If M is at rest at
x0, then the functionx(t) is

x(t) = x0. (object at rest) (7)
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If M moves with constant velocityv0 then

x(t) = x0 + v0t. (object with constant velocity) (8)

Figure 2 illustrates graphs of these functions. The abscissa (horizontal axis) is the
independent variablet, and the ordinate (vertical axis) is the dependent variablex.
The slope in the second graph isv0. Note that the units ofv0 must be a length unit
divided by a time unit, because

v0 = slope =
rise
run

=
∆x

∆t
; (9)

for example, the units could be m/s. Now, recall from calculus that the slope in a
graph is equal to the derivative of the function! Thus,the derivative of the position
x(t) is the velocityv(t).

Figure 2: Motion of an object:
(a) zero velocity and (b) con-
stant positive velocity.

So far we have considered only constant velocity. If the velocity is not constant,
then theinstantaneous velocityat a timet is the slope of the curve ofx versust,
i.e., the slope of the tangent line. Again, this is precisely the derivative ofx(t).
Lettingv(t) denote the velocity,

v(t) = lim
∆t→0

∆x

∆t
=

dx

dt
. (10)

Another notation for the time-derivative, often used in mechanics, isẋ(t) ≡ dx/dt.
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Becausev(t) is defined by the limit∆t → 0, there is an instantaneous velocity at
everyt. We summarize the analysis by a definition:

Definition. The velocityv(t) is a function of timet, defined by
v(t) = dx/dt.

2.2 Acceleration

If the velocity is changing then the object M is accelerating. Theaccelerationis
defined as the time-derivative of the velocity,

a(t) = lim
∆t→0

∆v

∆t
=

dv

dt
. (definition of acceleration) (11)

By taking the limit∆t → 0, the acceleration is defined at every instant. Also,
becausev = dx/dt, the accelerationa is thesecond derivativeof x(t),

a(t) =
d2x

dt2
= ẍ(t). (12)

Example 2-3.A car accelerates away from a stop sign, starting at rest. Assume
the acceleration is a constant5 m/s2 for 3 seconds, and thereafter is0. (a) What is
the final velocity of the car? (b) How far does the car travel from the stop sign in
10 seconds?

Solution. (a) Let the origin be the stop sign. During the 3 seconds while the car
is accelerating, the acceleration is constant and so the velocity function must be

v(t) = at, (13)

because the derivative ofat (with respect tot) is a. Note thatv(0) = 0; i.e., the
car starts from rest. Att = 3 s, the velocity is the final velocity,

vf = v(3 s) = 5
m
s2
× 3 s = 15

m
s

. (14)

(b) The position as a function of time isx(t), and

dx

dt
= v(t). (15)

Equation (15) is called adifferential equationfor x(t). We know the derivative;
what is the function? The general methods for solving differential equations in-
volve integration. For this simple case the integral is elementary,

x(t) = x(0) +
∫ t

0
v(t)dt (16)

Please be sure that you understand why (16) is correct.
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general equations for constant acceleration

position x(t) = x0 + v0t + 1
2at2

velocity v(t) = dx/dt = v0t + at

acceleration a(t) = dv/dt = a, constant

Table 1: Formulae for constant acceleration. (x0 = initial position, v0 = initial
velocity, anda = acceleration.)

Before we try to do the calculation, let’s make sure we understand the problem.
The car moves with velocityv(t) = at (constant acceleration) for 3 seconds. How
far does the car move during that time? Thereafter it moves with constant velocity
vf = 15 m/s. How far does it move fromt = 3 s to t = 10 s? The combined
distance is the distance traveled in 10 s.

Well, we can calculate the postion by the integral in (16). The initial position is
x(0) = 0. The velocity functuion isat for t from 0 to 3 s; andv(t) is vf for t > 3
s. Thus, fort = 10 s,

x(t) =
∫ 3

0
atdt +

∫ 10

3
vfdt

= 1
2a(3 s)2 + vf(7 s)

= 127.5 m.

After 10 seconds the car has moved 127.5 meters.

Generalization. Some useful general formulae for constant acceleration are recorded
in Table 1. In the table,v0 is a constant equal to the velocity att = 0. Also,x0 is a
constant equal to the position att = 0. As an exercise, please verify thata = dv/dt
andv = dx/dt. Remember thatx0 andv0 are constants, so their derivatives are0.
The velocity and position as functions oft for constant acceleration are illustrated
in Fig. 3.

Example 2-4.A stone is dropped from a diving platform10 m high. When does
it hit the water? How fast is it moving then?

Solution. We’ll denote the height above the water surface byy(t). The initial
height isy0 = 10 m. The initial velocity isv0; because the stone is dropped, not
thrown, its initial velocityv0 is 0. The acceleration of an object in Earth’s gravity,
neglecting the effects of air resistance,3 is a = −g whereg = 9.8 m/s2. The

3Air resistance is a frictional force called “drag,” which depends on the size, shape, surface
roughness, and speed of the moving object. The effect on a stone falling 10 m is small.
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Figure 3: Constant acceler-
ation. The two graphs are
(a) velocityv(t) and (b) posi-
tion x(t) as functions of time,
for an object with constant ac-
celerationa. Note that the
slope increases with time in
the lower graph.Why?

accelerationa is negative because the direction of acceleration is downward; i.e.,
the stone accelerates toward smallery. Using Table 1, the equation for positiony
as a function oft is

y(t) = y0 − 1
2gt2. (17)

The variabley is the height above the water, so the surface is aty = 0. The timetf
when the stone hits the water is obtained by solvingy(tf) = 0,

y0 − 1
2gt2f = 0. (18)

The time is

tf =
√

2y0

g
=

√
2× 10 m
9.8 m/s2

= 1.43 s. (19)

Note how the final unit came out to be seconds, which is correct. The time to fall
to the water surface is1.43 seconds.

The equation for velocity is

v(t) =
dy

dt
= −gt. (20)

This is consistent with the second row in Table 1, becausev0 = 0 anda = −g.
The velocity when the stone hits the water is

vf = v(tf) = −9.8
m
s2
× 1.43 s = −14.0

m
s

. (21)

The velocity is negative because the stone is moving downward. The finalspeedis
the absolute value of the velocity,14.0 m/s.
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2.3 Newton’s second law

Newton’s second law of motion states that the accelerationa of an object is pro-
portional to thenet forceF acting on the object,

a =
F
m

, (22)

or F = ma. The constant of proportionalitym is themassof the object. Equation
(22) may be taken as thedefinitionof the quantitym, the mass.

A Comment on Vectors. For two- or three-dimensional mo-
tion, the position, velocity, and accleration are all vectors—
mathematical quantities with both magnitude and direction. We
will denote vectors byboldfacesymbols, e.g.,x for position,v
for velocity, anda for acceleration. In hand-written equations,
vector quantities are usually indicated by drawing an arrow (→)
over the symbol.

Acceleration is a kinematic quantity—determined by the motion. Equation (22)
relates acceleration and force.But some other theory must determine the force. There
are only a few basic forces in nature: gravitational, electric and magnetic, and nu-
clear. All observed forces (e.g., contact, friction, a spring, atomic forces, etc.) are
produced in some way by those basic forces. Whatever force is acting on an object,
(22) states how that force influences the motion of the object (according to classical
mechanics!).

The massm in (22) is called theinertial mass, because it would be determined
by measuring the acceleration produced by a given force. For example, if an object
is pulled by a spring force of50 N, and the resulting acceleration is measured to be
5 m/s2, then the mass is equal to10 kg.

The gravitational force is exactly (i.e., as precisely as we can measure it!) pro-
portional to the inertial mass. Therefore the acceleration due to gravity is indepen-
dent of the mass of the accelerating object. For example, at the surface of the Earth,
all falling objects have the same acceleration due to gravity,g = 9.8 m/s2 (ignoring
the force of air resistance4). It took the great genius of Galileo to see that the small
differences between falling objects are not an effect of gravity but of air resistance.
Newton’s equationa = F/m explains why: Theforceof gravity is proportional to
the mass; therefore theaccelerationby gravity is independent of the mass.

The equationF = ma tells us how an object will respond to a specified force.
Because the accelerationa is a derivative,

a =
dv
dt

=
d2x
dt2

, (23)

4Take a sheet of paper and drop it. It falls slowly and irregularly, not moving straight down but
fluttering this way and that, because of aerodynamic forces. But wad the same piece of paper up into
a small ball and drop it. Then it falls with the same acceleration as a more massive stone.
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Newton’s second law is adifferential equation. To use Newtonian mechanics, we
must solve differential equations.
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3 PROJECTILE MOTION

An ideal projectile is an object M moving in Earth’s gravity with no internal propul-
sion, and no external forces except gravity. (Areal projectile is also subject to
aerodynamic forces such as drag and lift. We will neglect these forces, a fairly
good approximation if M moves slowly.)

The motion of a projectile must be described withtwo coordinates: horizontal
(x) and vertical (y). Figure 4 shows the motion of the projectile in thexy coordinate
system. The curve is thetrajectoryof M.

Figure 4: Projectile motion.
Horizontal (x) and vertical (y)
axes are set up to analyze the
motion. The initial position is
(x, y) = (x0, y0). The initial
velocityv0 is shown as a vec-
tor at (x0, y0). The curve is
the trajectory of the projectile.
The inset shows the initial ve-
locity vectorv0 separated into
horizontal and vertical compo-
nents,v0x̂i and v0y ĵ; θ is the
angle of elevation ofv0. (̂i =
unit horizontal vector,̂j = unit
vertical vector)

Suppose M is released at(x, y) = (x0, y0) at timet = 0. Figure 4 also indicates
the initial velocity vectorv0 which is tangent to the trajectory at(x0, y0). Let θ be
the angle of elevation of the initial velocity; then thex andy components of the
initial velocity vector are

v0x = v0 cos θ, (1)

v0y = v0 sin θ. (2)

Horizontal component of motion. The equations for the horizontal motion
are

x(t) = x0 + v0xt, (3)

vx(t) = v0x. (4)

These are the equations for constant velocity,vx = v0x. There is no horizontal
acceleration (neglecting air resistance) because the gravitational force is vertical.
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Vertical component of motion. The equations for the vertical motion are

y(t) = y0 + v0yt− 1
2gt2, (5)

vy(t) = v0y − gt. (6)

These are the equations for constant acceleration,ay = −g. (As usual,g =
9.8 m/s2.) The vertical force isFy = −mg, negative indicating downward, where
m is the mass of the projectile. The acceleration isay = Fy/m by Newton’s sec-
ond law.5 Thusay = −g. The acceleration due to gravity does not depend on the
mass of the projectile because the force is proportional to the mass. Thus (5) and
(6) are independent of the mass.

Example 3-5. Verify that the derivative of the position vector is the velocity
vector, and the derivative of the velocity vector is the acceleration vector, for the
projectile.

Solution. Position, velocity, and acceleration are allvectors. The position vector
is

x(t) = x(t)̂i + y(t)̂j. (7)

Here î denotes the horizontal unit vector, andĵ denotes the vertical unit vector.
For the purposes of describing the motion, these unit vectors areconstants, inde-
pendent oft. The time dependence of the position vectorx(t) is contained in the
coordinates,x(t) andy(t).

The derivative ofx(t) is

dx
dt

=
dx

dt
î +

dy

dt
ĵ

= v0x̂i + (v0y − gt) ĵ

= vx̂i + vy ĵ = v. (8)

As required,dx/dt is v. The derivative ofv(t) is

dv
dt

=
dvx

dt
î +

dvy

dt
ĵ

= 0 + (−g)̂j = −gĵ. (9)

The acceleration vector has magnitudeg and direction−ĵ, i.e., downward; soa =
−gĵ. We see thatdv/dt = a, as required.

3.1 Summary

To describe projectile motion (or 3D motion in general) we must use vectors.
However, for the ideal projectile (without air resistance) the two components—
horizontal and vertical—are independent. The horizontal component of the motion

5Newton’s second law isF = ma.
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has constant velocityv0x, leading to Eqs. (3) and (4). The vertical component of
the motion has constant accelerationay = −g, leading to Eqs. (5) and (6).

To depict the motion, we could plotx(t) andy(t) versust separately, or make
a parametric plot ofy versusx with t as independent parameter.6 The parametric
plot yields aparabola. Galileo was the first person to understand the trajectory of
an ideal projectile (with negligible air resistance): The trajectory is a parabola.

6This kind of plot —y(t) versusx(t) with t as independent parameter — is called a parametric
plot.
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4 CIRCULAR MOTION

Consider an object M moving on a circle of radiusR, as illustrated in Fig. 5. We
could describe the motion by Cartesian coordinates,x(t) andy(t), but it is simpler
to use the angular positionθ(t) because the radiusR is constant. The angleθ is
defined in Fig. 5. It is the angle between the radial vector and thex axis. The value
of θ is sufficient to locate M. From Fig. 5 we see that the Cartesian coordinates are

x(t) = R cos θ(t), (1)

y(t) = R sin θ(t). (2)

If θ(t) is known, thenx(t) andy(t) can be calculated from these equations.

Figure 5:Circular motion. A
mass M moves on a circle of
radius R. The angleθ(t) is
used to specify the position. In
radians,θ = s/R wheres is
the arclength, as shown. The
velocity vectorv(t) is tangent
to the circle. The inset shows
the unit vectorŝθ andr̂, which
point in the direction of in-
creasingθ andr, respectively.

In calculus we always use theradian measurefor an angleθ. The radian mea-
sure is defined as follows. Consider a circular arc with arclengths on a circle of
radiusR. The angle subtended by the arc, in radians, is

θ =
s

R
. (radian measure) (3)

4.1 Angular velocity and the velocity vector

The angular velocityω(t) is defined by

ω(t) =
dθ

dt
. (angular velocity) (4)

This function is theinstantaneousangular velocity at timet. For example, if M
moves with constant speed, traveling around the circle in timeT , then the angular
velocity is constant and given by

ω =
2π

T
. (constant angular velocity) (5)
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To derive (5) consider the motion during a time interval∆t. The arclength∆s
traveled along the circle during∆t is R∆θ where∆θ is the change ofθ during∆t,
in radians. The angular velocity is then

ω =
∆θ

∆t
=

∆s/R

∆t
. (6)

Because the speed is constant,∆θ/∆t is constant and independent of the time in-
terval∆t. Let∆t be one period of revolutionT . The arclength for a full revolution
is the circumference2πR. Thus

ω =
2πR/R

T
=

2π

T
. (7)

The instantaneousspeedof the object is the rate of increase of distance with
time,

v(t) = lim
∆t→0

∆s

∆t
= lim

∆t→0

R∆θ

∆t

= R
dθ

dt
= Rω(t). (8)

But what is the instantaneousvelocity? Velocity is a vectorv, with both direction
and magnitude. The magnitude ofv is the speed,v = Rω. The direction is tangent
to the circle, which is the same as the unit vectorθ̂. (See Fig. 5.) Thus the velocity
vector is

v = Rωθ̂, (9)

which points in the direction of̂θ and has magnitudeRω. In general,v, ω, θ and
θ̂ are all functions of timet as the particle moves around the circle. But of course
for circular motion,R is constant. We summarize our analysis as a theorem:

Theorem 1. The velocity vector in circular motion is

v(t) = R ω(t) θ̂(t). (10)

4.2 Acceleration in circular motion

Now, what is theaccelerationof M as it moves on the circle? The acceleration
a is a vector, so we must determine both its magnitude and direction. Unlike the
velocityv, which must be tangent to the circle, the acceleration has both tangential
and radial components.

Recall that we have defined acceleration as the derivative of velocity in the case
of one-dimensional motion. The same definition applies to the vector quantities for
two- or three-dimensional motion. Using the definition of the derivative,

a(t) = lim
∆t→0

v(t + ∆t)− v(t)
∆t

=
dv
dt

. (11)
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The next theorem relatesa for circular motion to the parameters of the motion.

Theorem 2. The acceleration vector in circular motion is

a = R
dω

dt
θ̂ −R ω2 r̂. (12)

Proof: We must calculate the derivative ofv, using (10) forv. At time t, the
acceleration is

a(t) =
dv
dt

=
d

dt

(
Rωθ̂

)
= R

(
dω

dt
θ̂ + ω

dθ̂

dt

)
. (13)

Note that (13) follows from the Leibniz rule for the derivative of the product
ω(t)θ̂(t). Now,

dθ̂

dt
= lim

∆t→0

∆θ̂

∆t
. (14)

Figure 6 demonstrates that∆θ̂ ≈ −r̂∆θ for small∆θ. (The relation of differen-
tials isdθ̂ = −r̂ dθ.) The direction of∆θ̂ is radially inward. This little result has
interesting consequences, as we’ll see! The derivative is then

dθ̂

dt
= lim

∆t→0

−r̂∆θ

∆t
= −r̂

dθ

dt
= −r̂ω. (15)

Substituting this result into (13) we find

a(t) = R
dω

dt
θ̂ −R ω2 r̂, (16)

which proves the theorem.

Figure 6: Proof thatdθ̂ =
−r̂ dθ. P1 and P2 are points
on the circle with angle dif-
ference∆θ. The inset shows
that ∆θ̂ (= θ̂2 − θ̂1) is cen-
tripetal (i.e., in the direction of
−r̂) and has magnitude∆θ in
the limit of small∆θ.
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For circular motion, the radial component of the acceleration vector isar =
−Rω2. This component ofa is called thecentripetal acceleration. The word
“centripetal” meansdirected toward the center. We may writear in another form.
By Theorem 1,ω = v/R; therefore

ar = −v2

R
. (17)

If the speed of the object is constant, thendω/dt = 0 and the accelerationa is
purely centripetal. Inuniform circular motion, the acceleration vector is always
directed toward the center of the circle with magnitudev2/R.

Imagine a ball attached to a string of lengthR, moving around a circle at con-
stant speed with the end of the string fixed. The trajectory must be a circle because
the string length (the distance from the fixed point) is constant.The ball constantly
accelerates toward the center of the circle (ar = −v2/R) but it never gets any
closer to the center (r(t) = R, constant)!This example illustrates the fact that the
velocity and acceleration vectors may point in different directions. In uniform cir-
cular motion, the velocity is tangent to the circle but the acceleration is centripetal,
i.e., orthogonal to the velocity.

Example 4-6.Suppose a race car travels on a circular track of radiusR = 50 m.
(This is quite small!) At what speed is the centripetal acceleration equal to1 g?

Solution. Using the formulaa = v2/R, and settinga = g, the speed is

v =
√

gR =
√

9.8 m/s2 × 50 m = 22.1 m/s. (18)

Converting to miles per hour, the speed is about48 mi/hr. A pendulum suspended
from the ceiling of the car would hang at an angle of 45 degrees to the vertical (in
equilibrium), because the horizontal and vertical components of force exerted by
the string on the bob would be equal, both equal tomg. The pendulum would hang
outward from the center of the circle, as shown in Fig. 7. Then the string exerts
a force on the bob with aninward horizontal component, which is the centripetal
force on the bob.

?

The equationar = −v2/r for the centripetal acceleration in circular motion
was first published by Christiaan Huygens in 1673 in a book entitledHorologium
Oscillatorium. Huygens, a contemporary of Isaac Newton, was one of the great
figures of the Scientific Revolution. He invented the earliest practical pendulum
clocks (the main subject of the book mentioned). He constructed excellent tele-
scopes, and discovered that the planet Saturn is encircled by rings. In his scientific
work, Huygens was guided by great skill in mathematical analysis. Like Galileo
and Newton, Huygens used mathematics to describe nature accurately.
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Figure 7: A race car on a cir-
cular track has centripetal ac-
celerationv2/R. If v2/R =
g, then the equilibrium of a
pendulum suspended from the
ceiling is at 45 degrees to the
vertical. In the frame of refer-
ence of the track, the bob ac-
celerates centripetally because
it is pulled toward the cen-
ter by the pendulum string.
In the frame of reference of
the car there is a centrifugal
force—an apparent (but fic-
titious) force directed away
from the center of the track.
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Introduction and Review

Vectors Review

A vector is a mathematical 

quantity with both a direction

and a magnitude.

Directions

g

Example

Position vectors in 2 dimens.

Vector xP is at angle θ North of East;   
θ = arctan(b/a).

P : (a,b)
xP = a i + b j
Q : (c,d)
x = c i + d j

O

O

1d - Vectors Review 1

The position of a particle is 

given by the position vector 

xP= a i + b j. The coordinates 

(a,b) are the displacements 

from the origin, O.

xQ = c i + d j

Distance O to P = √ a2 + b2
Distance Q to P = 

√ (a‐c)2 + (b‐d)2

Vectors and Scalars

Position Vectors

Vectors

r, v, a          (kinematics)
F, p, L          (dynamics), p, ( y )

Scalars

distance  r = | r | 

speed   v = | v |

magnitude of a vector A = | A |

time t
direction  theis     )/(arctan

magnitude  theis     

 vectorposition        ˆˆ
22

xy
yxD

yx

=
+=

+=

θ

jir

1d - Vectors Review 2

Velocity is  a vector, 

Time is a  scalar, t.

mass m

energy E

A scalar is a mathematical quantity 

that has no direction (in space).

jirv ˆˆ
dt
dy

dt
dx

dt
d

+==
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1, 2, 3 dimensions

Vectors in 3 dimensions Vectors in 1 dimension

P : ( a, b, c )  Cartesian coordinates In one dimension, there are 

1d - Vectors Review 3

( )

xP = a i + b j + c k
only two directions

( +x or –x )

Plane polar coordinates (2D) Spherical Polar Coordinates 

(3D)

Coordinate Systems

r = √ x2+y2
φ = arctan (y/x)

x = r cos φ
y = r sin φ x = r sin θ cos φ

y = r sin θ sin φ

r = √ x2 + y2 + z2
φ = arctan(y/x)

1d - Vectors Review 4

φ  arctan (y/x)

x = x i + y j =  r r

E.g., circular motion

x = x i + y j +z k =  r r
E.g., motion with a central force

y = r sin θ sin φ
z = r cos θθ = arctan(r⊥/r)
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Addition of Vectors

A + B

Vector Algebra

Dot Product

A·B = A B cos θ

e.g., r = x i + y j

Multiplication of Vectors

A·B involves the projection

of one vector on the other.

^ ^

1d - Vectors Review 5

Dot Product  ‐‐ a scalar
Cross Product  ‐‐ a vector

A൉B
A×B In Cartesian coordinates ,

A·B = ( ax i + ay j )·( bx i + by j )
=  ax bx + ay by

½ | A x B | = the area inside 
the triangle:

Cross Product

A × B = A B sin θ  n

Vector Algebra

Proof
Area = 1/2 × base × height

= 1/2  × A  × B sin θ
= 1/2 | A x B | 

In Cartesian coordinates

1d - Vectors Review 6

A × B
• Direction is ⊥ to the plane;

• Magnitude = A B | sin θ | .

In Cartesian coordinates,

i     j     k
A x B =    ax ay az

bx by bz
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Calculus is the branch of 
mathematics that describes 
continuous change. It is an 
essential part of physics, 
because most laws of physics 
involve continuous change.

Calculate the motion of the 
particle:

We’ll review calculus quickly, for 
its applications in mechanics. 
Students enrolled in PHY 321 
should have taken at least two 
semesters of calculus, including 
both differentiation and 
integration.

Negative charge

Positive charge

1 2 3

Calculus was first developed by 
Isaac Newton, and 
independently by Gottfried 
Leibniz. Newton needed this 

th ti f hi l f

For example, Newton’s second 
law is a differential equation (or 
actually, a pair of equations  …

dxdp

To apply these eq1uations, and 
solve them, we’ll need a good 
understanding of calculus. For 
example,

1                                                                     2                                                       3

new mathematics for his laws of 
motion.  dt

dx
mmvpF

dt
dp

===     and     
∫∫ =Δ=Δ dttvxdttFp )(   or,  ;)(

4                                                                     5                                                       6

Derivative:

Slope and Rate of Change

The definition of the derivative 
of a function f(x) is

Another notation for f’(x) is

A useful geometric picture of the 
derivative is the slope of a graph 
of f(x). That is, f’(x) is the slope 
of the line tangent to the graph 
of f(x) at x.h

xfhxf
xf

h

)()(lim)('
0

−+
=

→

df
dx1 2 3

Rate of change. A function f(x) 
has an independent variable x 
and a dependent variable f. The 
derivative f’(x) is the rate of 
h f f ith t t F

Position and velocity

1                                                                     2                                                       3

f’(x) = slope

0.600

0.800

1.000

X(t)

change of f with respect to x. For 
example, in mechanics we write 
x(t) for the position as a function 
of time; the velocity = rate of 
change of position; v(t)= dx/dt.4                                                                     5                                                      

0.000

0.200

0.400

0 0.5 1 1.5 2 2.5

v(t)
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-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2

f (x)
f’ ‘(x)

Example 1.  f(x) = x2 .  Calculate f‘(x).

1

-1.6

-1.1

-0.6

-0.1

0.4

0.9

-0.5 0.5 1.5

g’(x)

g(x)

1.5

2

Example 2.  f(x) = e‐1.5x  .  Calculate g‘(x).

Example 3.  y(t) = v0 t – 0.5 g t2. 
Calculate vyt).

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

y(t)

v(t)
3

Example 4.  W(u) = u2 . 
Calculate dW/du.

1
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

W (u)

dW/du

2

Example 5.  ξ(t) = 2 cos(2πt).
Calculate ξ(t).

.

-2.2

-1.4

-0.6

0.2

1

1.8

0 0.5 1 1.5 2 2.5

ξ(t)

ξ(t)/2π
.

12

Example 6.  
The potential energy is 
U(x) = tanh(x).
Calculate the force F(x).

3
- 1.2

- 0.8

- 0.4

0

0.4

0.8

1.2

- 2 - 1.5 - 1 - 0.5 0 0.5 1 1.5 2

U(x)

F(x)
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0

10

20

30

2 2 6 10 14 18

Integral:
Area or Total of a Continuum
The definition of the integral 
of a functiom g(x), over a 
domain a < x < b, is

∑∫ ∞→
=

N

n
b

a N
xxgdxxg

1
)(lim)( δ

a b

Integration is the process of 
calculation in which a large 
number of small components 
are added together, in the 
limit that the number of parts 
approaches infinity and the 
i h 0-2 2 6 10 14 18

where δx = (b‐a)/N and xn = 
a+(n‐1/2)δx 1                                                                     2                                                       3

=∞→ nN 1 a              b
The integral as the “area 
under the curve”.

sizes approach 0.

We often encounter integrals 
in physics, because we must 
calculate the total of some 
continuum quantity. We

Example. Calculate the area of 
an ellipse with semi‐major axis 
= a and semi‐minor axis = b.

4                                                                     5                                                       6

continuum quantity. We 
subdivide the continuum into 
infinitesimal p arts, and add 
their contributions –
integration.




