PHY 321 1

The Solar System

VIDEO LECTURES: 6-1 6-2 6-3

1 KEPLER’S LAWS OF PLANETARY MOTION

Kepler’'s first law is that the planets travel on ellipses with the sun at one focal
point. Newton deduced from this empirical observation that the gravitational force
on the planet must be proportionalttgr? wherer is the distance from the sun.

Figure 1 shows a possible planetary orbit. The ellipse is characterized by two
parameterse = semimajor axis and = eccentricity.

Figure 1: A possible planetary
orbit. The sun S is at the ori-
gin, which is one focal point
of the ellipse, and the planet
P moves on the ellipse. The
large diameter i2a, wherea

is called the semimajor axis. S
The distance between the foci
is 2ae wheree is called the ec-
centricity. The perihelion dis-
tance isr— = a(1 — e) and
the aphelion distance is; = 2a
a(l+e). Acircleis an ellipse
with e = 0.

20e —

ry r.
aphelion perihelion

1.1 Kepler's third law

Kepler’s third law relates the peridl and the semimajor axis of the ellipse. To

the accuracy of the data available in his time, Kepler foundiR&s proportional

to a®. The next example derives this result from Newtonian mechanics, for the
special case of a circular orbit. A circle is an ellipse with eccentricity equal to
zero; then the semimajor axis is the radius.
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Example 1-1.Show thatT? « 3 for a planet that revolves around the sun on a
circular orbit of radiug-.t

Solution. In analyzing the problem, we will neglect the motion of the sun. More
precisely, both the sun and the planet revolve around their center of mass. But
because the sun is much more massive than the planet, the center of mass is ap-
proximately at the position of the sun, so that the sun may be considered to be at
rest. Neglecting the motion of the sun is a good approximation. A more accurate
calculation is in Exercise 8.

Let m denote the mass of the planet, aWdthe mass of the sun.

For a circular orbit the angular speed of the planet is constantygdt = 0.
Therefore the accelerationas= —rw?7; or, in terms of the speed= rw,

a=——T. 1)

The direction is-r, i.e., centripetal, toward the sun. The gravitational force exerted
by the sun on the planet is

GMm .

F=- 2 r, (2)

r

which is also centripetal. Equation (2) is Newton’s theory of Universal Gravitation,
in which the force is proportional to/r2.

Newton’s second law of motion states th&t= ma. Therefore,

mu? GMm
fm. ©)

r r

The speed of the planet is

1/2
v = (GM> . (4)

r

The distance traveled in tin¥(one period of revolution) i8xr (the circumference
of the orbit), so the speedis= 27r/T'. Substituting this expression forinto (4)
gives

2rr\%2  GM
1) = . 5
() =< ©)
Or, rearranging the equation,
4m2p3
T2 — . 6
GM ) ( )

We consider an ideal case in which thiaer planets have a negligible effect on the planet being
considered. This is a good approximation for the solar system, but not exact.
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we see thaf™? is proportional ta-3, as claimed.

In obtaining (6) we neglected the small motion of the sun around the center-
of-mass point. This is a very good approximation for the solar system. In this
approximation? /r3 is constant; i.e.J? /3 has the same value for all nine plan-
ets.

We have only considered a special case—a circular orbit. In general, a planetary
orbit is anellipse The calculation of elliptical orbits is more complicated, but the
final result for the period is simple

472a3 472a3

T? = ~
GM+m) GM

()

wherea is the semimajor axis.

1.2 Kepler's second law

Kepler's second law states that the radial vector sweeps out equal areas in equal
times. This law is illustrated in Fig. 2. In Newtonian mechanics it is a consequence
of conservation of angular momentum. The next two examples show how Kepler's
second law follows from Newton’s theory.

Example 1-2.Conservation of angular momentum

The angular momenturh of an object of mass: that moves in they plane is
defined by

L =m (zvy, — yvg). (8)

Show thatl is constant if the force on the object is central.

Solution. To show that a function is constant, we must show that its derivative
is 0.2 In (8), the coordinates andy, and velocity components, andv,, are all
functions of timet. But the particular combination id is constant, as we now
show. The derivative of. is

dL dx . dvy, dy dv,
— = m|—vy T — Uy — Y——
dt at™ T a T at a
= Mmugvy + xFy, — muyu, — yFy
= xF, —yF,. 9)

In the first step we have used the fact that/dt = v, anddv/dt = a; also, by
Newton’s second law, the acceleratiaris equal toF/m. The final line (9) is
called thetorqueon the object.

For any central force the torque(s The term “central force” means that the
force is in the direction ofT, i.e., along the line to the origin. (The sign—attractive

2The derivative of any constant(s
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AH PH

Figure 2: Kepler's second

law. The radial vector sweeps

out equal areas in equal times.

(a) The radial vector sweeps

out the shaded region as the

planet moves from P to

P,. (b) The planet moves )
faster near perihelion (PH) and

. A8
slower near aphelion (AH).

or repulsive— is unimportant for the proof of conservation of angular momentum.)
Figure 3 shows a central for&toward the origin. The components Bfare

F, = —Fcosf and F, = —Fsin0 (20)
whereF is the strength of the force and the minus signs meanRhattoward0.

Thus the torque on the object is

torque = zF,—yF,
= —rcosf Fsinf+ rsinf Fcosf = 0. (12)

Since the torque i8, equation (9) implies thatL /dt = 0. Since the derivative is
0, the angular momentum is constant, as claimed.

Example 1-3.Kepler's law of equal areas

Show that the radial vector from the sun to a planet sweeps out equal areas in
equal times.

Solution. Figure 2(a) shows the elliptical orbit. The shaded akehis the area
swept out by the radial vector between timesdt + At¢. The shaded area may be
approximated by a triangle, with baseind height-Af, whereA# is the change
of the angular position betweérandt + At. Approximating the area as a triangle



PHY 321 5

—

Figure 3: An attractive central
force. The Cartesian coordi-
nates at P are = r cos # and y + P
y = rsin . The force compo-
nents areF, = —F cos 6 and F
F, = —F'sinf where[F’ is the

magnitude of the force vector.
The torquex F, — yF, is0. 0

is a good approximation for smafiz. Now consider the limitAt — 0; i.e., At
andA A become the differentialét andd A. The area of the triangle becomes

1 1
dA = 3 X base x height = 3 XTX rdf = %7“20{9. (12)

Thus, in the limitA¢t — 0, where we replacét by dt,

dA 1 ,df
= TQE = %r%}. (13)

dt 2

We'll use this result presently.

But now we must express the angular momentum in polar coordinates.

position vector of M isx = rr, and itsz andy components are
x =rcosf and y =rsinf. (14)

The velocity vector is

dx dr.. dr dr. df~
V:E—ﬁr‘krﬁ—ar‘kraa, (15)

note thatdr = 6 6.3 So, ther andy components of velocity are

dr do .

e = cosf — r Sin 6, (16)
dr . do

o= sin§ + T €os 6. a7

3Exercise 3.

The
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Now, L is defined in (8); substituting the polar expressionsifoy, v, andv, we
find

L = m(avy —yvy)

= m [r;l; cosfsinf + 7”22—3 cos? 9]
d do
-m [rr sin 6 cos @ — r? — sin? 0}
dt dt
do df
_ 20Y 2 S 20) 20U
= mrio (cos 0 + sin (9) mrt o (18)

The resultis
L = mriw. (19)
Comparing this result to (13) we see that

dA L
e 20

dt 2m (20)

But L is a constant of the motion by conservation of angular momentum. Thus
dA/dt is constant. In wordghe rate of change of the area is constairg., inde-
pendent of position on the orbit. Hence Kepler’s second law is explained: The area
increases at a constant rate ggial areas are swept out in equal times.
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2 THE INVERSE SQUARE LAW

Kepler’s first law is that a planet travels on an ellipse with the sun at one focal
point. We will prove that this observation implies that the force on the planet must
be an inverse square law, i.e., proportionall fo?> wherer is the distance from

the sun. The calculations depend on all that we have learned about derivatives and
differentiation.

The equation for an elliptical orbit in polar coordinatesf) is

a —62
() = 21—

= -/ 21
1+ ecosb (1)

wherea = semimajor axis and = eccentricity. Figure 1 shows a graph of the
ellipse. What force is implied by the orbit equation (21)? The radial acceleration

is?
d2r do\?
ar—dtQ—T<dt> . (22)

The first term involves the change of radius; the second term is the centripetal
acceleration-rw?. Now, a, must equalF, /m by Newton's second law. To de-
termine the radial forcé’. we must express, as a function of~. We know that
angular momentum is constant; by (19),

de do L
T 50w T (23)
Now starting from (21), and applying the chain rdle,
dro_ drdf _ —a(l—e) <) (—esinb) @
dt — dodt (1+ecosf)? dt
_a(l—e€?)esing L(1+ecosf)?  Lesinf (24)
 (I+ecosh)? ma2(l —e2)2  ma(l —e2)’
and, taking another derivative,
d?r _ Lecost db Lecosf L (25)

dt2  ma(l —e2) dt - ma(l — e2) mr?’

Combining these results in (22), the radial component of the acceleration is

L%ecos L \?
a = —V——— —r|—
m2a(l — e?)r? mr?
B L2 ecost _ 1+ ecost B —L? (26)
 om2r? la(l—e€?)  a(l—e€2) |  m2a(l —e2)r?’

4See Exercise 4.
The calculations of (24) and (25) require these results from calculus: the derivative (with respect
to 0) of cos 0 is — sin 6, and the derivative ofin 6 is cos 6.
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By Newton’s second law, then, the radial force must be

F. =ma __k here k—L72 27)
r=mr=me W ~ ma(l —e?)’

Our resultis that the force on the planet must be an attactive inverse-square-law,
F, = —k/r%. The orbit parameters are related to the force paranetgr

L* = ma(1 — e)k. (28)

Newton’s Theory of Universal Gravitation

From the fact that planetary orbits are elliptical, Newton deducedthat —k /2.

Also, k must be proportional to the planet’s masdecausd™? « a3, independent

of the mass. But thekh must also be proportional to the solar mass, because for
every action there is an equal but opposite reaction. Therefore the force vector
must be

T (29)

whereG is a universal constant. Newton’s theory of universal gravitation states
that any two masses in the universeand M, attract each other according to the
force (29).

Newton’s gravitational constart cannot be determined by astronomical ob-
servations, because the solar magsis not known independentlyG must be
measured in the laboratory. An accurate measuremefitisfvery difficult, and
was not accomplished in the time of Newton. The first measuremefitveds by
Henry Cavendish in 1798&7 is hard to measure because gravity is extremely weak,

G=667x10""m?s2kg™ 1. (30)

Newton'’s theory of gravity is very accurate, but not exact. A more accurate
theory of gravity—the theory of general relativity—was developed by Einstein. In
relativity, planetary orbits are not perfect ellipses; the orpiecessvery slowly.

Indeed this precession is observed in precise measurements of planetary positions,
and the measurements agree with the relativistic calculation.

* * *

The examples in this introduction to classical mechanics show how calculus
is used to understand profound physical observations such as the motion of the
planets. Calculus is essential in the study of motion.
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EXERCISES

1. The Earth’s orbit around the Sun is nearly circular, with radius= 1.496 x
10 m and periodl’ = 1y. From this, and théaboratory measurement of New-
ton’s gravitational constan§ = 6.67 x 101! m®s~2kg~!, calculate the mass of
the sun.

2. Use a graphing calculator or computer program to plot the curve defined by Eq.
(21). (Pick representative values of the parameteasde.) This is an example of
apolar plot, in which the curve in a plane is defined by giving the radial distance
r as a function of the angular positién Be sure to set the aspect ratio (= ratio of
length scales on the horizontal and vertical axes) equal to

3. Consider a particle M that moves on thg plane. The polar coordinates, ¢)
and unit vectorsi(, 8) are defined in Fig. 4.

(a) Show thatr = r cos # andy = rsin 6.

(b) Show that for a small displacement of M,
AF~0A9 and A8~ —TA0.
(c) The position vector of M i = rr, which has magnitude and directiorr. In

general, bothr andr vary with timet, as the object moves. Show that the velocity
vector is

v = dr T+ r@ 0
~dt dt
y -
6 A
A
r M
Figure 4: Problem 3. \9
“‘ x

4. Derive Eq. (22) for the radial componet of the acceleration in polar coordi-
nates. [Hint: Use the results of the previous exercise.]

5. Prove that the relation of parameters in (28) is true for a circular orbit. (For a
circle, the eccentricity is 0.)

6. Look up the orbital data—periofl and semimajor axis—for the planets. Use
the year (y) as the unit of time f@r, and the astronomical unit (AU) as the unit of
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distance fom. Calculatel™ /a? for all nine planets. What do you notice about the
values ofT? /a3? Explain.

7. The angular momentum vectdr for motion of a particle in three dimensions
is defined byL. = x x p. Prove that/L/dt is equal to the torque on the particle
around the origin,.

8. Reduced mass.Suppose two masses;; andme, exert equal but opposite
forces on each other. Define the center of mass podRiamd relative vector by

miX1 + moXa

R =

and r = X — Xo.
m1 + mg

(Note thatr is the vector frommns to m;.)

(@) Show thati’R/dt?> = 0, i.e., the center of mass point moves with constant
velocity. (It could be at rest.)

(b) Show that

d’r
Pz = F(r)

where . is thereduced massmimso/(my + mz). Thus the two-body problem
reduces to an equivalent one-body problem with the reduced mass.

(c) Show that Kepler’s third law for the case of a circular orbit should properly be

2 472p3
 G(M +m)

rather than (6). Why is (6) approximately correct?

9. Consider ainary star Assume the two stars move on circular orbits. Given the
massesi/; andM,, and the distance between the stars, determine the period of
revolutionT'.

10. Flight to Mars. To send a satellite from Earth to Mars, a rocket must accelerate

the satellite until it is in the correct elliptical orbit around the sun. The satellite does

not travel to Mars under rocket power, because that would require more fuel than
it could carry. It just moves on a Keplerian orbit under the influence of the sun’s

gravity.

The satellite orbit must have perihelion distance = Rp (= radius of Earth’s
orbit) and aphelion distanee. = R;; (= radius of Mars’s orbit) as shown in the
figure. The planetary orbit radii are

Rp = 1.496 x 10" m and Ry = 2.280 x 10 m.

(a) What is the semimajor axis of the satellite’s orbit?

(b) Calculate the time for the satellite’s journey. Express the result in months and
days, counting one month as 30 days.
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Figure 5: Problem 10.

11. Parametric plots in Mathematica

A parametric plot is a kind of graph—a curve gfversusx wherexz andy are
known as functions of an independent variabtalledthe parameterTo plot the
curve specified by

r = f(t) and y = g(t),
the Mathematica command is

ParametricPlot[{f[t],g[t]}.{t,t1,t2},
PlotRange->{{x1,x2},{y1,y2}},
AspectRatio->r]

Here{t1,t2 } is the domain of, and{x1,x2 } and{yl,y2 } are the ranges of
x andy. To give thex andy axes equal scales,should have the numerical value
of (y2-y1)/(x2-x1)

Use Mathematica to make the parametric plots below. In each case name the curve
that results.

(@z(t) = t, y(t) =t — 2.

(b) z(t) = ¢, y(t) = 1/t.

(€) z(t) = cos(2nt), y(t) = sin(27t).

(d) z(t) = 2 cos(27t), y(t) = 0.5sin(27t).
() z(t) = cos(27t/3), y(t) = sin(27t /7).
12. Parametric equations for a planetary orbit

The sun is at the origin and the plane of the orbit has coordinasesly. We can
write parametric equations for the timeand coordinates andy, in terms of an
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independent variablg:

T
t = %(@Z)—ssind))

r = a(cosy —e)

Yy o= am sin 1)
The fixed parameters aflé = period of revolutiong = semimajor axis, ane =
eccentricity.
(a) The orbit parameters of Halley’s comet are

a=17.959AU and ¢ = 0.9673.

Use Mathematica to make a parametric plot of the orbit of Halley’s comet. (You
only need the parametric equations foandy, letting the variable) go from 0 to
27 for one revolution.)

(b) Calculate the perihelion distance. Express the result in AU.

(c) Calculate the aphelion distance. Express the result in AU. How does this com-
pare to the radius of the orbit of Saturn, or Neptune?

(d) Calculate the period of revolution. Express the result in years.
13. Parametric surfaces

A parametriccurveis a curve on a plane. The curve is specified by giving coordi-
natesr andy as functions of an independent parameter

A parametricsurfaceis a surface in 3 dimensions. The surface is specified by
giving coordinateg, y, andz as functions of 2 independent parametersndv.
That is, the parametric equations for a surface have the form

x = f(u,v), y = g(u,v), z = h(u,v).

As u andv vary over their domains, the points, y, z) cover the surface.

The Mathematica command for plotting a parametric surfaBaiametricPlot3D
To make a graph of the surface, execute the command

ParametricPlot3D[{f[u,v],g[u,V],h[u,V]},
{u,ul,u2},{v,v1i,v2}]

In this command(u, u2) is the domain ol and(vy, v2) is the domain ob. Be-
fore giving the command you must define in Mathematica the funcfjang,
gl[u,v], h[u,v] . For example, for exercise (a) below you would define

flu_,v_]:=Sin[u]Cos|v]

Make plots of the following parametric surfaces. In each case name the surface.
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(@) For0 < u < mand0 < v < 27,

f(u,v) = sinucoswv
g(u,v) = sinusinv
h(u,v) = cosu

(b) For0 < u < 27mand—0.3 < v < 0.3,

f(u,v) = cosu+vcos(u/2)cosu
g(u,v) = sinu+vcos(u/2)sinu
h(u,v) = wsin(u/2)

(c) ForO0 < u < 27w and0 < v < 27,

flu,v) = 0.2(1 —v/(27)) cos(2v)(1 + cosu) + 0.1 cos(2v)
g(u,v) = 0.2(1 —v/(27))sin(2v)(1 + cosu) + 0.1sin(2v)
h(u,v) = 0.2(1 —v/(27))sinu+ v/(27)



