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The Solar System
VIDEO LECTURES: 6-1 6-2 6-3

1 KEPLER’S LAWS OF PLANETARY MOTION

Kepler’s first law is that the planets travel on ellipses with the sun at one focal
point. Newton deduced from this empirical observation that the gravitational force
on the planet must be proportional to1/r2 wherer is the distance from the sun.

Figure 1 shows a possible planetary orbit. The ellipse is characterized by two
parameters:a = semimajor axis ande = eccentricity.

Figure 1: A possible planetary
orbit. The sun S is at the ori-
gin, which is one focal point
of the ellipse, and the planet
P moves on the ellipse. The
large diameter is2a, wherea
is called the semimajor axis.
The distance between the foci
is 2ae wheree is called the ec-
centricity. The perihelion dis-
tance isr− = a(1 − e) and
the aphelion distance isr+ =
a(1 + e). A circle is an ellipse
with e = 0.

1.1 Kepler’s third law

Kepler’s third law relates the periodT and the semimajor axisa of the ellipse. To
the accuracy of the data available in his time, Kepler found thatT 2 is proportional
to a3. The next example derives this result from Newtonian mechanics, for the
special case of a circular orbit. A circle is an ellipse with eccentricity equal to
zero; then the semimajor axis is the radius.
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Example 1-1.Show thatT 2 ∝ r3 for a planet that revolves around the sun on a
circular orbit of radiusr.1

Solution. In analyzing the problem, we will neglect the motion of the sun. More
precisely, both the sun and the planet revolve around their center of mass. But
because the sun is much more massive than the planet, the center of mass is ap-
proximately at the position of the sun, so that the sun may be considered to be at
rest. Neglecting the motion of the sun is a good approximation. A more accurate
calculation is in Exercise 8.

Letm denote the mass of the planet, andM the mass of the sun.

For a circular orbit the angular speed of the planet is constant, sodω/dt = 0.
Therefore the acceleration isa = −rω2r̂; or, in terms of the speedv = rω,

a = −v
2

r
r̂. (1)

The direction is−r̂, i.e., centripetal, toward the sun. The gravitational force exerted
by the sun on the planet is

F = −GMm

r2
r̂, (2)

which is also centripetal. Equation (2) is Newton’s theory of Universal Gravitation,
in which the force is proportional to1/r2.

Newton’s second law of motion states thatF = ma. Therefore,

mv2

r
=
GMm

r2
. (3)

The speed of the planet is

v =
(
GM

r

)1/2

. (4)

The distance traveled in timeT (one period of revolution) is2πr (the circumference
of the orbit), so the speed isv = 2πr/T . Substituting this expression forv into (4)
gives (

2πr
T

)2

=
GM

r
. (5)

Or, rearranging the equation,

T 2 =
4π2r3

GM
; (6)

1We consider an ideal case in which theotherplanets have a negligible effect on the planet being
considered. This is a good approximation for the solar system, but not exact.
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we see thatT 2 is proportional tor3, as claimed.

In obtaining (6) we neglected the small motion of the sun around the center-
of-mass point. This is a very good approximation for the solar system. In this
approximation,T 2/r3 is constant; i.e.,T 2/r3 has the same value for all nine plan-
ets.

We have only considered a special case—a circular orbit. In general, a planetary
orbit is anellipse. The calculation of elliptical orbits is more complicated, but the
final result for the period is simple

T 2 =
4π2a3

G(M +m)
≈ 4π2a3

GM
(7)

wherea is the semimajor axis.

1.2 Kepler’s second law

Kepler’s second law states that the radial vector sweeps out equal areas in equal
times. This law is illustrated in Fig. 2. In Newtonian mechanics it is a consequence
of conservation of angular momentum. The next two examples show how Kepler’s
second law follows from Newton’s theory.

Example 1-2.Conservation of angular momentum

The angular momentumL of an object of massm that moves in thexy plane is
defined by

L = m (xvy − yvx) . (8)

Show thatL is constant if the force on the object is central.

Solution. To show that a function is constant, we must show that its derivative
is 0.2 In (8), the coordinatesx andy, and velocity componentsvx andvy, are all
functions of timet. But the particular combination inL is constant, as we now
show. The derivative ofL is

dL

dt
= m

[
dx

dt
vy + x

dvy

dt
− dy

dt
vx − y

dvx

dt

]
= mvxvy + xFy −mvyvx − yFx

= xFy − yFx. (9)

In the first step we have used the fact thatdx/dt = v, anddv/dt = a; also, by
Newton’s second law, the accelerationa is equal toF/m. The final line (9) is
called thetorqueon the object.

For any central force the torque is0. The term “central force” means that the
force is in the direction of±r̂, i.e., along the line to the origin. (The sign—attractive

2The derivative of any constant is0.
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Figure 2: Kepler’s second
law. The radial vector sweeps
out equal areas in equal times.
(a) The radial vector sweeps
out the shaded region as the
planet moves from P1 to
P2. (b) The planet moves
faster near perihelion (PH) and
slower near aphelion (AH).

or repulsive— is unimportant for the proof of conservation of angular momentum.)
Figure 3 shows a central forceF toward the origin. The components ofF are

Fx = −F cos θ and Fy = −F sin θ (10)

whereF is the strength of the force and the minus signs mean thatF is toward0.
Thus the torque on the object is

torque = xFy − yFx

= −r cos θ F sin θ + r sin θ F cos θ = 0. (11)

Since the torque is0, equation (9) implies thatdL/dt = 0. Since the derivative is
0, the angular momentumL is constant, as claimed.

Example 1-3.Kepler’s law of equal areas

Show that the radial vector from the sun to a planet sweeps out equal areas in
equal times.

Solution. Figure 2(a) shows the elliptical orbit. The shaded area∆A is the area
swept out by the radial vector between timest andt+∆t. The shaded area may be
approximated by a triangle, with baser and heightr∆θ, where∆θ is the change
of the angular position betweent andt+ ∆t. Approximating the area as a triangle
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Figure 3: An attractive central
force. The Cartesian coordi-
nates at P arex = r cos θ and
y = r sin θ. The force compo-
nents areFx = −F cos θ and
Fy = −F sin θ whereF is the
magnitude of the force vector.
The torque,xFy − yFx, is 0.

is a good approximation for small∆t. Now consider the limit∆t → 0; i.e., ∆t
and∆A become the differentialsdt anddA. The area of the triangle becomes

dA =
1
2
× base× height =

1
2
× r × rdθ = 1

2r
2dθ. (12)

Thus, in the limit∆t→ 0, where we replace∆t by dt,

dA

dt
=

1
2
r2
dθ

dt
= 1

2r
2ω. (13)

We’ll use this result presently.

But now we must express the angular momentum in polar coordinates. The
position vector of M isx = rr̂, and itsx andy components are

x = r cos θ and y = r sin θ. (14)

The velocity vector is

v =
dx
dt

=
dr

dt
r̂ + r

dr̂
dt

=
dr

dt
r̂ + r

dθ

dt
θ̂; (15)

note thatdr̂ = θ̂ dθ.3 So, thex andy components of velocity are

vx =
dr

dt
cos θ − r

dθ

dt
sin θ, (16)

vy =
dr

dt
sin θ + r

dθ

dt
cos θ. (17)

3Exercise 3.
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Now,L is defined in (8); substituting the polar expressions forx, y, vx andvy we
find

L = m (xvy − yvx)

= m

[
r
dr

dt
cos θ sin θ + r2

dθ

dt
cos2 θ

]
−m

[
r
dr

dt
sin θ cos θ − r2

dθ

dt
sin2 θ

]
= mr2

dθ

dt

(
cos2 θ + sin2 θ

)
= mr2

dθ

dt
. (18)

The result is

L = mr2ω. (19)

Comparing this result to (13) we see that

dA

dt
=

L

2m
. (20)

But L is a constant of the motion by conservation of angular momentum. Thus
dA/dt is constant. In words,the rate of change of the area is constant, i.e., inde-
pendent of position on the orbit. Hence Kepler’s second law is explained: The area
increases at a constant rate, soequal areas are swept out in equal times.
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2 THE INVERSE SQUARE LAW

Kepler’s first law is that a planet travels on an ellipse with the sun at one focal
point. We will prove that this observation implies that the force on the planet must
be an inverse square law, i.e., proportional to1/r2 wherer is the distance from
the sun. The calculations depend on all that we have learned about derivatives and
differentiation.

The equation for an elliptical orbit in polar coordinates(r, θ) is

r(θ) =
a(1− e2)
1 + e cos θ

(21)

wherea = semimajor axis ande = eccentricity. Figure 1 shows a graph of the
ellipse. What force is implied by the orbit equation (21)? The radial acceleration
is4

ar =
d2r

dt2
− r

(
dθ

dt

)2

. (22)

The first term involves the change of radius; the second term is the centripetal
acceleration−rω2. Now, ar must equalFr/m by Newton’s second law. To de-
termine the radial forceFr we must expressar as a function ofr. We know that
angular momentum is constant; by (19),

mr2
dθ

dt
= L, so

dθ

dt
=

L

mr2
. (23)

Now starting from (21), and applying the chain rule,5

dr

dt
=

dr

dθ

dθ

dt
=

−a(1− e2)
(1 + e cos θ)2

(−e sin θ)
dθ

dt

=
a(1− e2)e sin θ
(1 + e cos θ)2

L(1 + e cos θ)2

ma2(1− e2)2
=

Le sin θ
ma(1− e2)

; (24)

and, taking another derivative,

d2r

dt2
=

Le cos θ
ma(1− e2)

dθ

dt
=

Le cos θ
ma(1− e2)

L

mr2
. (25)

Combining these results in (22), the radial component of the acceleration is

ar =
L2e cos θ

m2a(1− e2)r2
− r

(
L

mr2

)2

=
L2

m2r2

{
e cos θ
a(1− e2)

− 1 + e cos θ
a(1− e2)

}
=

−L2

m2a(1− e2)r2
. (26)

4See Exercise 4.
5The calculations of (24) and (25) require these results from calculus: the derivative (with respect

to θ) of cos θ is− sin θ, and the derivative ofsin θ is cos θ.
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By Newton’s second law, then, the radial force must be

Fr = mar = − k

r2
where k =

L2

ma(1− e2)
. (27)

Our result is that the force on the planet must be an attactive inverse-square-law,
Fr = −k/r2. The orbit parameters are related to the force parameterk by

L2 = ma(1− e2)k. (28)

Newton’s Theory of Universal Gravitation

From the fact that planetary orbits are elliptical, Newton deduced thatFr = −k/r2.
Also,k must be proportional to the planet’s massm becauseT 2 ∝ a3, independent
of the mass. But thenk must also be proportional to the solar mass, because for
every action there is an equal but opposite reaction. Therefore the force vector
must be

F = Frr̂ = −GMm

r2
r̂ (29)

whereG is a universal constant. Newton’s theory of universal gravitation states
that any two masses in the universe,m andM , attract each other according to the
force (29).

Newton’s gravitational constantG cannot be determined by astronomical ob-
servations, because the solar massM is not known independently.G must be
measured in the laboratory. An accurate measurement ofG is very difficult, and
was not accomplished in the time of Newton. The first measurement ofG was by
Henry Cavendish in 1798.G is hard to measure because gravity is extremely weak,

G = 6.67× 10−11 m3 s−2 kg−1. (30)

Newton’s theory of gravity is very accurate, but not exact. A more accurate
theory of gravity—the theory of general relativity—was developed by Einstein. In
relativity, planetary orbits are not perfect ellipses; the orbitsprecessvery slowly.
Indeed this precession is observed in precise measurements of planetary positions,
and the measurements agree with the relativistic calculation.

? ? ?

The examples in this introduction to classical mechanics show how calculus
is used to understand profound physical observations such as the motion of the
planets. Calculus is essential in the study of motion.
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EXERCISES

1. The Earth’s orbit around the Sun is nearly circular, with radiusR⊕ = 1.496 ×
1011 m and periodT = 1 y. From this, and thelaboratorymeasurement of New-
ton’s gravitational constant,G = 6.67× 10−11 m3s−2kg−1, calculate the mass of
the sun.

2. Use a graphing calculator or computer program to plot the curve defined by Eq.
(21). (Pick representative values of the parametersa ande.) This is an example of
a polar plot, in which the curve in a plane is defined by giving the radial distance
r as a function of the angular positionθ. Be sure to set the aspect ratio (= ratio of
length scales on the horizontal and vertical axes) equal to1.

3. Consider a particle M that moves on thexy plane. The polar coordinates (r, θ)
and unit vectors (̂r, θ̂) are defined in Fig. 4.

(a) Show thatx = r cos θ andy = r sin θ.

(b) Show that for a small displacement of M,

∆r̂ ≈ θ̂ ∆θ and ∆θ̂ ≈ −r̂∆θ.

(c) The position vector of M isx = rr̂, which has magnituder and direction̂r. In
general, bothr andr̂ vary with timet, as the object moves. Show that the velocity
vector is

v =
dr

dt
r̂ + r

dθ

dt
θ̂.

Figure 4: Problem 3.

4. Derive Eq. (22) for the radial componentar of the acceleration in polar coordi-
nates. [Hint: Use the results of the previous exercise.]

5. Prove that the relation of parameters in (28) is true for a circular orbit. (For a
circle, the eccentricitye is 0.)

6. Look up the orbital data—periodT and semimajor axisa—for the planets. Use
the year (y) as the unit of time forT , and the astronomical unit (AU) as the unit of
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distance fora. CalculateT 2/a3 for all nine planets. What do you notice about the
values ofT 2/a3? Explain.

7. The angular momentum vectorL for motion of a particle in three dimensions
is defined byL = x × p. Prove thatdL/dt is equal to the torque on the particle
around the origin,.

8. Reduced mass.Suppose two masses,m1 andm2, exert equal but opposite
forces on each other. Define the center of mass positionR and relative vectorr by

R =
m1x1 +m2x2

m1 +m2
and r = x1 − x2.

(Note thatr is the vector fromm2 tom1.)

(a) Show thatd2R/dt2 = 0, i.e., the center of mass point moves with constant
velocity. (It could be at rest.)

(b) Show that

µ
d2r
dt2

= F(r)

whereµ is the reduced mass, m1m2/(m1 + m2). Thus the two-body problem
reduces to an equivalent one-body problem with the reduced mass.

(c) Show that Kepler’s third law for the case of a circular orbit should properly be

T 2 =
4π2r3

G(M +m)

rather than (6). Why is (6) approximately correct?

9. Consider abinary star. Assume the two stars move on circular orbits. Given the
massesM1 andM2, and the distancea between the stars, determine the period of
revolutionT .

10. Flight to Mars. To send a satellite from Earth to Mars, a rocket must accelerate
the satellite until it is in the correct elliptical orbit around the sun. The satellite does
not travel to Mars under rocket power, because that would require more fuel than
it could carry. It just moves on a Keplerian orbit under the influence of the sun’s
gravity.

The satellite orbit must have perihelion distancer− = RE (= radius of Earth’s
orbit) and aphelion distancer+ = RM (= radius of Mars’s orbit) as shown in the
figure. The planetary orbit radii are

RE = 1.496× 1011 m and RM = 2.280× 1011 m.

(a) What is the semimajor axis of the satellite’s orbit?

(b) Calculate the time for the satellite’s journey. Express the result in months and
days, counting one month as 30 days.
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Figure 5: Problem 10.

11. Parametric plots in Mathematica

A parametric plot is a kind of graph—a curve ofy versusx wherex andy are
known as functions of an independent variablet calledthe parameter. To plot the
curve specified by

x = f(t) and y = g(t),

the Mathematica command is

ParametricPlot[{f[t],g[t]},{t,t1,t2},

PlotRange->{{x1,x2},{y1,y2}},

AspectRatio->r]

Here{t1,t2 } is the domain oft, and{x1,x2 } and{y1,y2 } are the ranges of
x andy. To give thex andy axes equal scales,r should have the numerical value
of (y2-y1)/(x2-x1) .

Use Mathematica to make the parametric plots below. In each case name the curve
that results.

(a)x(t) = t, y(t) = t− t2.

(b) x(t) = t, y(t) = 1/t.

(c) x(t) = cos(2πt), y(t) = sin(2πt).

(d) x(t) = 2 cos(2πt), y(t) = 0.5 sin(2πt).

(e)x(t) = cos(2πt/3), y(t) = sin(2πt/7).

12. Parametric equations for a planetary orbit

The sun is at the origin and the plane of the orbit has coordinatesx andy. We can
write parametric equations for the timet, and coordinatesx andy, in terms of an
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independent variableψ:

t =
T

2π
(ψ − ε sinψ)

x = a (cosψ − ε)

y = a
√

1− ε2 sinψ

The fixed parameters areT = period of revolution,a = semimajor axis, andε =
eccentricity.

(a) The orbit parameters of Halley’s comet are

a = 17.959 AU and ε = 0.9673.

Use Mathematica to make a parametric plot of the orbit of Halley’s comet. (You
only need the parametric equations forx andy, letting the variableψ go from 0 to
2π for one revolution.)

(b) Calculate the perihelion distance. Express the result in AU.

(c) Calculate the aphelion distance. Express the result in AU. How does this com-
pare to the radius of the orbit of Saturn, or Neptune?

(d) Calculate the period of revolution. Express the result in years.

13. Parametric surfaces

A parametriccurveis a curve on a plane. The curve is specified by giving coordi-
natesx andy as functions of an independent parametert.

A parametricsurfaceis a surface in 3 dimensions. The surface is specified by
giving coordinatesx, y, andz as functions of 2 independent parametersu andv.
That is, the parametric equations for a surface have the form

x = f(u, v), y = g(u, v), z = h(u, v).

As u andv vary over their domains, the points(x, y, z) cover the surface.

The Mathematica command for plotting a parametric surface isParametricPlot3D .
To make a graph of the surface, execute the command

ParametricPlot3D[{f[u,v],g[u,v],h[u,v]},

{u,u1,u2},{v,v1,v2}]

In this command,(u1, u2) is the domain ofu and(v1, v2) is the domain ofv. Be-
fore giving the command you must define in Mathematica the functionsf[u,v],
g[u,v], h[u,v] . For example, for exercise (a) below you would define

f[u_,v_]:=Sin[u]Cos[v]

Make plots of the following parametric surfaces. In each case name the surface.
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(a) For0 ≤ u ≤ π and0 ≤ v ≤ 2π,

f(u, v) = sinu cos v
g(u, v) = sinu sin v
h(u, v) = cosu

(b) For0 ≤ u ≤ 2π and−0.3 ≤ v ≤ 0.3,

f(u, v) = cosu+ v cos(u/2) cosu
g(u, v) = sinu+ v cos(u/2) sinu
h(u, v) = v sin(u/2)

(c) For0 ≤ u ≤ 2π and0 ≤ v ≤ 2π,

f(u, v) = 0.2(1− v/(2π)) cos(2v)(1 + cosu) + 0.1 cos(2v)
g(u, v) = 0.2(1− v/(2π)) sin(2v)(1 + cosu) + 0.1 sin(2v)
h(u, v) = 0.2(1− v/(2π)) sinu+ v/(2π)


