
 1

Programmable Logic Design – I

Read through each section completely before starting so that you have the
benefit of all the directions.

Introduction
In labs 11 and 12 you built simple logic circuits on breadboards using TTL logic

circuits on 7400 series chips. This process is simple and easy for small circuits. With
increasing complexity of the logic circuitry the possibility of wiring errors grows and it
becomes increasingly difficult to debug the circuit. Another problem is the difficulty in
finding all the needed logic circuitry on available chips. To address these problems the
electronics industry has developed the concepts of Programmable Logic Devices (PLD’s)
or Field Programmable Gate Arrays (FPGA’s). The basic idea behind these devices is the
notion that logic circuitry of arbitrary complexity can be constructed from simple gates
connected with appropriate links and the technical advance that has made this possible is
the development of large gate arrays with computer programmable links. The design
process then consists of specifying the logic design by means of a logic design language
such as VHDL or by entering it on a schematic layout. A computer program then turns
this design into a series of instructions that are downloaded into the chip to establish the
desired logic circuitry. Facilities are provided to specify the pin out of the logic, to
control placement of logic circuits on the chip and to impose timing constraints.

Design Tools
For our designs we will be using the Xilinx Corporation (www.xilinx.com) ISE

Foundation 9.2i. We will start by entering our design in the form of a circuit schematic
but, in later stages of the labs we will use a high level language, VHDL, to benefit from
its power and flexibility. In our designs we will sample only a few of the features and
capabilities of this software package which is widely used in the electronics industry
today.

Hardware
We will download our designs into a Digilab D2XL board connected to a Digilab

Digital I/O board (DI01) shown in Figure 1 below. The FPGA chip on the D2XL board is
a member of the Spartan II family, the XC2S30, with package type tq144, embodying
972 logic cells with a total of 30,000 gates. While this size of device was state-of-the-art
a few years ago, rapid advances in technology have pushed the largest device sizes to
many millions of gates.

The D2XL board’s I/O resources are limited to a single pushbutton and one LED
for use with a test program to verify proper operation. A large variety of I/O devices,
however, are available on the DI01 board attached to the D2XL by means of two 40 pin
connectors. Our two experiments will exploit the features of the D2XL/DI01 combination
to design a number of circuits that will demonstrate the usefulness of this procedure.

 2

Getting Started

Hooking up the Hardware
The circuitry is extremely delicate and can easily be destroyed if handled

improperly. Static electricity which is easily generated is particularly dangerous and care
must be taken to wear a grounded wrist strap when handling the circuitry. Your instructor
will show you how to use it properly. Your two boards should be connected to one
another, with power cord installed and a programming cable from the parallel port of the
PC to the JTAG connector of the D2XL attached. Ask your instructor for help if this is
not the case.

Figure 1: The D2XL and DI01 boards with programming cable attached.

 3

Testing the D2XL board

You should have a Xilinx ISE 9.2i icon on your screen. Double click on it to open
the program. As a first program to download we want to use “Di01Demo”(C:/Digilent/
Di01Demo.ise) to test the integrity of the D2XL board and the attached Digital I/O 1
board. If another project comes up, close it from the “File” menu and use “Open Project”

from the same menu to open “Di01Demo”. If you are successful you should get a screen
display like Figure 2.

You need to double-click on the 3rd line in the top left window to get the display
in the top right window. These four windows represent the design environment for the
project with “Sources” in the top left window, the “Processes” for a given Source below
it, the contents of selected files in the right hand window and text files below. On top of
the “Sources” window is a tab to select the type of sources to be displayed. In this
instance the sources are those associated with “Synthesis/Implementation” but we will
also be interested with sources for “Behavioral Simulation”.

Figure 2: Project Navigator

 4

Before proceeding we need to check that we have selected the proper chip and
simulation software. If you right-click the xcs230-tq144 icon and select “Properties” you
should pop a window such as shown below:

Figure 3: Project Properties

Check that the Device and Package types are correctly selected and under “Simulator”
choose “ISE Simulator (VHDL/Verilog)” and “VHDL” for Preferred Language. When
you are satisfied, close the window.

Extensive help files are available online and at this time it would be a good idea to
go to the “Help” window, select “Help Topics, FPGA Design, FPGA Design Flows” and
read the chapter “FPGA Design Flow Overview”.

To test our board we are going to select the “Synthesis/Implementation” sources,
select “Di01Demo-Behavioral” and in the “Processes” window expand the “Generate
Programming File” and then double-click on “Configure Device (iMPACT)”. Doing this
puts the program through all of the necessary steps to generate the file for downloading to
the FPGA and to initiate the downloading process.

If you are prompted to do so, choose the Configure devices using Boundary Scan
bullet and select “Automatically connect a cable and identify a Boundary Scan chain”.
You will then be asked to assign a new configuration file, choose “dio1demo.bit”. If all
goes well you should wind up with a page such as shown in Figure 4.

Click on the boundary scan tab at the bottom of the window. Following
instructions, right-click on the device and select “Program” and if there are no problems
success will be signaled by a “Program Succeeded” announcement. At this time the 7-
segment display should be cycling through the numbers 0 to 9, the slide switches should
control their corresponding LED’s and depressing the push buttons should interrupt the
display on the 7-segment chip opposite the button. Also, the push button on the D2XL

 5

card, when depressed, should light up the LED “LD1”. If the “Program Succeeded”
message came up and the board did not program properly, unplug the board for 15
seconds, plug it back in and select “program” again.

Figure 4: Programming page.

 6

If this is so, then the D2XL board and the DI/O1 board are in proper working order and
we can go on to our first project.

Important Xilinx design notes:
1. Create your own directory in the D drive, D:\. Anything put into the root

directory C:/ will be wiped out as soon as you log off. All of your work must be
saved in your new D-drive directory or in its subdirectories. As a back-up, it is a
good idea to copy your directory contents onto a flash drive before logging off.

2. Your directory and subdirectories CANNOT contain any spaces.
3. DO NOT name any of your projects or design elements any reserved logical

names such as, AND, OR, COUNTER, BUS, OUTPUT, etc …
4. If you ignore any of these three notes, your project will not work. You will have

to start the project over from the beginning. Depending on the project this
could cost you a considerable amount of time. In addition, if one of your
projects fails for one of these three reasons points will be deducted from your
lab score.

5. If implementing your design to your D2XL and D101 boards does not work, try
restarting the board by disconnecting it from the power supply.

Design Project I
For our first project we will use “Schematic Entry” to design a circuit with a

single AND gate. We will use “ISE Simulator” to test its proper operation, attach push
buttons to the two inputs and an LED to the output, download it into the FPGA and test
its operation.

Schematic Entry
Go to the “Help” window, select “Help Topics” and then read the chapter FPGA

Design/Design Entry/Schematics. Close the current project and do not save the
configuration file. Select “File” “New Project” to get to the Project Wizard. Choose a
Project Name, Project Location on the D drive and Schematic for Top-Level Source
Type. Check that the appropriate hardware is selected and that “ISE Simulator” is chosen.
Do not create a new source nor add an old one at this time but continue until the process
finishes and displays the Design Environment again. Select the
“Synthesis/Implementation” tab; click on your device name and in the “Processes”
window “Create New Source”. From the choices given select “Schematic” and give it a
name of your choosing When the Wizard finishes, a schematic entry window is created.
Click on the “Symbols” tab in the “sources” window; choose “Logic” from the categories
in the sources window. (If your sources window is too small and you cannot get the
symbols or categories scroll bars to work, increase the length of the sources window.)
Select “and2” under symbols and place it in the schematic entry window. You may wish
to magnify the drawing for better viewing. Next add input and output buffers to the two
inputs and one output using the “buf” symbol. You will need the wiring tool to make the
connections. Each input needs an input marker and the output needs an output marker
which can be generated by clicking on the I/O Marker icon. Edit the default names to
change them to IN_1, IN_2 and OUT_1 respectively. Save your design and go to “Tools”

 7

“Check Schematic” to verify your design. If there are no errors you can go on to the next
step. Your design should look like Figure 5.

Modeling the Design

Figure 6: Timing choices for ISE simulator.

We must now model the design to see that it satisfies our design goals. Select the
“Behavioral Simulation” tab for “Sources”, click on the .sch file and in “Processes”

Figure 5: AND Logic Design.

 8

create “New Source”, “Test-bench Waveform” and give it some appropriate name. In the
“Timing Window” of Figure 6 select “Combinatorial” for the clocks and leave everything
else as it is. The next window, shown in Figure 7, gives you the opportunity of setting a
train of input pulses to test your logic design. Note that the two inputs should be chosen

to represent all possibilities for the circuit. Save your file and go back to the Sources
window with the “Behavioral Simulation” tab depressed.

Under processes select “Xilinx ISESimulator”, double click on “Simulate
Behavioral Model” and you should be rewarded with Figure 8. Check it over to assure
yourself that the simulation represents what you expect from your circuit.

Figure 7: Simulation logic train.

 9

Assigning Pins
Next we must assign pins to our device. Checking the DI01 Manual we note on

p.2 that the eight LED drive signals are active high. Thus we will attach the output of our
AND to the drive signal of LED 1. On p. 4 we note that activating a pushbutton connects
its output to Vdd or logic high. Thus we will want to tie our inputs to the outputs of
pushbuttons 1 and 2. Next we check the DI01/D2XL pin correspondence chart and note
that LD1 is connected to FPGA pin 93 and that BTN1 and BTN2 are connected to pins

Figure 8: The Test-Bench with input and output logic levels.

 10

84 and 85. Select the .sch file in the “Sources” window with tab set to
“Synthesis/Implementation” and double click on “Assign Package Pins” in the
“Processes” window under “User Constraints”. Answer “Yes” that you do want to create
an .ucf file. In the .ucf file enter p84, p85 and p93 in the “Loc” column for I/O
components “In_1”, “In_2” and “Out_1” respectively and then save the file choosing
“Synplify Verilog Default: []” as the bus delimiter.

Implementing the Design
Select the .sch file in the “Sources” window. Then under the “Processes” tab go

to “Generate programming” and double click “Configure Device [iMPACT]” to generate
the appropriate files and download them to the FPGA. Follow the same steps you did in
the initial tests of the boards. Ignore any warnings about clocks. You should once again
see “Programming Succeeded” as the indication that no errors were found in your design
and that the download was successfully accomplished.

Testing the Design
Manually verify that BTN1 and BTN2 are inputs to an AND circuit whose result

is displayed in LD1.

Design Project II
Following the procedure above implement, simulate, download and test the circuit

in Figure 9 which creates a NOR gate from 4 NAND’s. Finish the circuit by adding input
and output (I/O) buffers and giving appropriate labels to the I/O lines. You can once
again use BTN1 and BTN2 for inputs and LD1 for the output. Verify that the truth table
for a two-input NOR gate is satisfied.

Figure 9: A two-input NOR circuit constructed from NAND's.

 11

Design Project III
One of the huge advantages of this form of design is that macros of arbitrary

complexity can be constructed, stored and reused in future designs. Our collection of
symbols contains many such macros. For our next design we will use one of them,
CB4RE, a 4 Bit Cascadable Binary Counter with Clock Enable and Synchronous Clear,
to construct a counter that will count from 0 to 5, reset and continue. We will then save it
as a new macro to be used in our next experiment. The design in Figure 10 is an
implementation of such a counter.

Write down a truth table for this counter using values for the clock (clk), counter
enable (cen), clear (clr) and sufficient number of clock cycles to show the full, repetitive
operation of the counter. What is meant by “synchronous clear”? You may wish to
consult the “Symbol Info” tab for the CB4RE counter.

A new wrinkle in this design is the presence of a bus which is a collection of
individual signals. It is automatically created when a wire, drawn with the wiring tool, is
labeled as a vector e.g. btout(3:0). Individual elements of the bus are selected via bus taps

with their names specified by using the netname tool. In our case these names are
btout(0) to btout(3). You may need to use the “Rotate” command located in the “Edit”
menu to orient the bus tabs properly.

Figure 10: A 0 to 5 counter.

 12

Create the schematic entry in Figure 10; check for errors and save the file. The
device that we wish to build will have 3 inputs, ce for Clock Enable, clr for Clear and clk
for Clock. Outputs will consist of a bus 4 bits wide, btout(3:0). Start a new project with
schematic entry at the highest level. Enter your design in the usual fashion naming the
inputs ce, clk and clr. To generate a bus for output draw a line using the wiring tool and
give it a name btout(3:0). The program will change the line into a thicker, bus, line in
correspondence with the name. Attach the bus taps as indicated and name them btout(0)
to btout(3) using the “net name” tool under the “Add” menu. Be sure to click directly on
the wire for the name to apply. You can use the “increase the name” feature to ease the
amount of typing.

Be sure to save the design and check for errors. If none are found, go back to
“Project” and create a new source of type “Testbench Waveform” using a single clock.
Provide changes in the logic states of “ce” and “clr” to fully test your design. Save this
file and go to “Simulate Behavioral Model”. Verify that your logic is working properly
by examining the outputs on the “Wave” plot below (Figure 11). You may have to
extend the simulation time to see a full clock cycle. In the toolbar, make sure the
simulation ran for at least 10000ns. If not, change it on the drop down menu in the
toolbar and hit the “run for specified time” under the “Simulation” menu. Note that the
“btout” bus is given numerically after each clock transition and can be expanded to look
at the individual bit states as well. Does the output agree with your Truth Table?

Next select your .sch file in “Sources” and double click “Create Schematic
Symbol” in “Processes” under “Design Utilities”. In your schematic entry page verify
that the new symbol is available for use.

Design Project IV
Today’s lab is the introductory part of a two lab series that will result in the construction
of a counter to count from 0 to 60 with the counts displayed on our 7-segment displays. If
you have arrived this far with time remaining you may wish to continue with next week’s
lab and construct the 0 to 60 counter that is at the heart of our stopwatch design.

 13

Figure 11: Testbench Waveforms for 0 to 5 Counter.

