Inductance

- self inductance L
- mutual inductance M

Self inductance

- Abstract

Ampere's Law \Rightarrow

$$
\Phi=\angle I
$$

Faraday's Law \Rightarrow

$$
\varepsilon=-L \frac{d I}{d t}
$$

- Practical

$$
L \frac{d I}{d t}+I R=E_{s}(t)
$$

- Example

$$
\begin{aligned}
& \text { suppose } Z_{s}=0 . \text { Then } \\
& \frac{d I}{d t}=-\frac{R}{L} I \\
& I(t)=I_{0} e^{-\frac{R}{L} t}
\end{aligned}
$$

Flux $\Phi=N B A$ where $B=\mu \frac{N}{l} I$

Mutral inductance

Abstract

$$
\begin{aligned}
& \Phi_{1}=L_{1} I_{1}+M_{12} I_{2} \\
& \text { fux due to flux dreto } \\
& B_{1} \propto I_{1} \\
& B_{2} \propto I_{2} \\
& \Phi_{2}=L_{2} I_{2}+M_{21} I_{1} \\
& \begin{array}{l}
\text { flnx Me do flnx ducto } \\
B_{2} \propto I_{2}
\end{array}
\end{aligned}
$$

Wite $\vec{B}_{2}=\nabla \times \vec{A}_{2}$

$$
M_{12}=\frac{\mu_{0}}{4 \pi} \oint_{c_{1}} \oint_{C_{2}} \frac{{\overrightarrow{d l_{1}}}_{1} \cdot \vec{l}_{2}}{\left|\vec{x}_{1}-\vec{x}_{2}\right|} \quad \text { (Newmann) }
$$

\longrightarrow viplas that $M_{12}=M_{21}$

Example

I can easing calculate $\Phi_{21} \quad$ (trough 2 due to 1)
So that tells re M_{21} :

$$
\begin{aligned}
& M_{21} Z_{1}=N_{2} B_{1} A=N_{2} \mu_{0} \frac{N_{1}}{l_{1}} \Gamma_{1} A \\
& M_{21}=\frac{\mu_{0} N_{1} N_{2} A}{l_{1}}
\end{aligned}
$$

I contrasty culculati Φ_{12} kit
I how $M_{12}=$ same thin $=\frac{\mu_{0} N_{1} N_{2} A}{l_{1}}$

The trans former
Design Principle

Self and Mutual Inductances

$$
\begin{aligned}
& L_{1}=\frac{\Phi}{I}=\frac{N_{1} B A}{I} \quad \text { and } \quad B=\mu_{0} N_{1} \mathrm{I} / \ell \\
& M_{21}=\frac{N_{2} B_{1} A}{I_{1}} \quad \text { and } \quad B_{1}=\mu_{0} N_{1} I_{1} / \ell \\
& L_{1}=N_{1}^{2} \lambda ; \quad L_{2}=N_{2}^{2} \lambda ; \quad M=N_{1} N_{2} \lambda \\
& \lambda=\frac{\mu_{0} A}{l} \quad M^{2}=L_{1} L_{2} \\
&
\end{aligned}
$$

Transformer Equations

$$
\varepsilon_{1}=A_{1} \cos \omega t
$$

$$
\text { ideal: }\left\{\begin{array}{l}
L_{1}=N_{1}^{2} \lambda, L_{2}=N_{2}^{2} \lambda \\
M=N_{1} N_{2} \lambda ; M^{2}=L_{1} L_{2}
\end{array}\right.
$$

$$
\begin{aligned}
\varepsilon_{1}-L_{1} \frac{d I_{1}}{d t}-M \frac{d I_{2}}{d t} & =I_{1} R_{1} \\
-L_{2} \frac{d I_{2}}{d t}-M \frac{d I_{1}}{d t} & =I_{2} R_{2}
\end{aligned}
$$

the segns monst be ansistant w/ Lenz's luw.

$$
\begin{align*}
A_{1} \cos \omega t & =L_{1} \frac{d I_{1}}{d t}+M \frac{d I_{2}}{d t}+I_{1} R_{t} \tag{1}\\
0 & =L_{2} \frac{d \Gamma_{2}}{d t}+M \frac{d I_{1}}{d t}+I_{2} R_{2} \tag{2}
\end{align*}
$$

(1)

$$
\begin{aligned}
& \times L_{2}-(2) \times M \Rightarrow \\
& L_{2} A_{1} \cos \omega t=L_{2} R_{1} I_{1}-M R_{2} I_{2} \\
& A_{1} \cos \omega t=R_{1} I_{1}-\frac{N_{1}}{N_{2}} R_{2} I_{2} \\
& I_{2}=-\frac{N_{2}}{N_{1}} \frac{1}{R_{2}}\left\{A_{1} \cos \omega t-R_{I} I_{1}\right\} \\
& \frac{d I_{2}}{d t}=-\frac{N_{2}}{N_{1} R_{2}}\left\{-\omega A_{1} \sin \omega t-R_{1} \frac{d I_{1}}{d t}\right\}
\end{aligned}
$$

Plug $\frac{d T_{2}}{d t}$ into quation (1) \Rightarrow riferental equation for $I_{1}(t)$.

Solution $I_{1}(t)=a \cos \omega t+b \operatorname{mi} \omega t$

$$
\begin{align*}
R_{1} R_{2} a+\left(\omega L_{1} R_{2}+\omega L_{2} R_{1}\right) b & =R_{2} A_{1} \tag{3}\\
-\left(\omega L_{1} R_{2}+\omega L_{2} R_{1}\right) a+R_{1} R_{2} b & =-\omega L_{2} A_{1} \tag{4}
\end{align*}
$$

Let $q=\omega L_{1} R_{2}+\omega L_{2} R_{1}$

$$
\begin{gathered}
\text { Det Matrix }=R_{1}^{2} R_{2}^{2}+q^{2} \\
{\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{R_{1}^{2} R_{2}^{2}+q^{2}}\left[\begin{array}{cc}
R_{1} R_{2} & -q \\
q & R_{1} R_{2}
\end{array}\right]\binom{R_{2} A_{1}}{-\omega L_{2} A_{1}}} \\
a=\frac{\left(R_{1} R_{2}^{2}+q \omega L_{2}\right) A_{1}}{R_{1}^{2} R_{2}^{2}+q^{2}} \\
b=
\end{gathered}
$$

unit:

$$
V / \Omega
$$

$$
=A
$$

$$
v / \Omega v
$$

$$
=A
$$

Sreaial ideal case: $R_{1}=0$.

$$
\begin{aligned}
& a=\frac{\omega L_{2}}{q} A_{1}=\frac{L_{2}}{L_{1} R_{2}} A_{1}=\frac{N_{2}^{2}}{N_{1}^{2}} \frac{A_{1}}{R_{2}} \\
& b=\frac{R_{2}}{q} A_{1}=\frac{A_{1}}{\omega L_{1}} \\
& I_{2}=-\frac{N_{2}}{N_{1}} \frac{A_{1}}{R_{2}} \cos \omega t
\end{aligned}
$$

$\left.\overline{\overline{\text { Exacie }}}\left\langle\varepsilon_{1} I_{1}\right\rangle=\begin{array}{cc}\left\langle I_{2}^{2} R_{2}\right\rangle & \text { evergy in } \\ \downarrow & \downarrow\end{array} \quad \begin{array}{c}\text { confared }\end{array}\right]$

$$
\frac{1}{2} A_{1} a \quad\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{A_{1}^{2}}{R_{2}} \frac{1}{2}
$$

$\overline{\overline{\text { Exerices }}} \quad I_{2} R_{2}=-\frac{N_{2}}{N_{1}} \varepsilon_{1}$
... needs a computer!

The trues former
Design Principle

primary
seundary oil C2
(N, turns) (N_{2} tums)

Quiz

For times $t<0$, the switch is open, as shown. For times $t \geq 0$ the switch is closed.
(a) Determine the current $\mathrm{I}(\mathrm{t})$ around the circuit for $t \geq 0$.
(b) Now suppose $\mathrm{R}=10 \Omega$ and $\mathrm{L}=0.025$ H. Calculate the time when I is 90% of its final value, $\mathrm{I}(\mathrm{t})=0.9 \mathcal{E} / \mathrm{R}$. Express the answer in milliseconds.

