Electricity and Magnetism (4)
Particle Dynamic
\rightarrow motion of a particle wite mos n and charge q

- $\eta^{\mu}=\frac{d \xi^{\mu}}{d \tau}$ and $p^{\mu}=m \eta^{\mu}$
- $\frac{d p^{u}}{d t}=q F^{\mu \nu} \eta_{\nu} \quad\left(\sum_{\nu=0}^{3}\right.$ implicl)
- $F^{\mu \nu}=\|\left[\begin{array}{cccc}\mu & E_{x / c} & E_{y} / c & E_{z} / c \\ -E_{x / c} & 0 & B_{z} & -B_{y} \\ -E_{y / c} & -B_{z} & 0 & B_{x} \\ -E_{z / c} & B_{y} & -B_{x} & 0\end{array}\right]$ the electromagnetic
- The quautitit Fur must be a tense;
lie., it rust transform as

$$
\begin{gathered}
F^{\prime \mu v}=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v} F^{\rho \sigma} \\
\text { frame } \sigma^{\prime} \longleftrightarrow \\
\uparrow \quad \text { frame of }
\end{gathered}
$$

Then the equation of motion, $\frac{d p^{\mu}}{d \tau}=q F^{\mu \nu} \eta_{\nu}$ is covariant; lie., consistent wite the postulate of relativity.

Today: Write Maxwell's Equations in tense form, using $F^{\mu \nu}$.

Maxwell's Equations
\longrightarrow linear mi $F^{\mu v}$; and first order in derivatives.

$$
\frac{\partial F^{\mu v}}{\partial x^{v}}
$$

First, an miprtcent theven of tenser analysis: $\frac{\partial}{\partial x^{\mu}}$ is like a loner index vector; ide, $\frac{\partial}{\partial x^{\nu}} \underbrace{\alpha \beta \ldots \mu \nu}=V^{\alpha \beta \ldots \mu}$ is a tensor
tense of rank N; N indices $\alpha \beta \ldots \mu \nu$ ("contraction q index ν)
tensor of rank $N-1$; $N-1$ indices $\alpha \beta \ldots \mu$

Examples

- ϕ a scalar $\Rightarrow \frac{\partial \phi}{\partial x^{\nu}}$ a tensor q rank $-1=A_{\nu}$ (a liner index rector)
- V^{μ} a vector $\Rightarrow \frac{\partial V^{\mu}}{\partial x^{\mu}}$ a tensor of rank 0
- T $T^{\mu r}$ a tensor $\Rightarrow \frac{\partial T^{\mu v}}{\partial x^{v}}$ a tensor q rank $1=U^{\mu}$ (an upper index vector)
- etc.

So, $\frac{\partial F^{M v}}{\partial x^{2}}$ is a spacetime vector.
What vector is it?

$$
\begin{aligned}
& \begin{aligned}
F^{\mu \nu} & =\left[\begin{array}{cccc}
\mu \\
0 & E_{x} / c & E_{y} / c & E_{z} / c \\
-\frac{E_{x}}{c} & 0 & B_{z} & -B_{y} \\
-\frac{E_{y}}{c} & -B_{z} & 0 & B_{x} \\
-\frac{E_{z}}{c} & B_{y} & -B_{x} & 0
\end{array}\right] \quad 12,4 / 3
\end{aligned} \\
& \text { Case } \mu=0 \left\lvert\, \quad \frac{\partial F^{o v}}{\partial x^{\nu}}=\frac{\partial F^{D D}}{\partial x^{0}}+\frac{\partial F^{0 i}}{\partial x^{i}} \quad\left(\sum_{i=1}^{3}\right. \text { inpiod) }\right. \\
& =0+\frac{\partial}{\partial x^{2}} \cdot\left(\frac{E^{i}}{c}\right)=\frac{1}{c} \nabla_{1} \vec{E} \\
& =\frac{\rho}{\epsilon_{6}} \quad \text { by Ganss's law } \quad \overline{\nabla \vec{E}}=\rho / 6
\end{aligned}
$$

Write $\frac{\partial F^{0 v}}{\partial x^{2}}=\mu_{0} J^{0}$ whas $J^{0}=\frac{\rho}{c x_{0} \mu_{0}}=c \rho$.
Cuse $\mu=i^{i}(=123) \quad \frac{\partial F^{i v}}{\partial x^{\nu}}=\frac{\partial F^{i 0}}{\partial x^{2}}+\frac{\partial F^{i j}}{\partial x J^{i}}$

$$
\begin{align*}
& =\frac{1}{c} \frac{\partial}{\partial t}\left(\frac{-E^{i}}{c}\right)+\epsilon_{y j} \frac{\partial}{\partial x} \tag{j}\\
& =\frac{-1}{c^{2}} \frac{\partial E^{i}}{\partial t}+(\nabla \times \vec{B})^{i}
\end{align*}
$$

$=\mu_{0} J^{i}$ by the Anjene-Maxurdl law
Result $\frac{\partial P^{\mu v}}{\partial x^{v}}=\mu_{0} J^{\mu} \quad$ wroue $J^{\mu}=\left[\begin{array}{l}c \rho \\ J_{x} \\ J_{y} \\ J_{z}\end{array}\right]$
Cunnents.
(1) Two of Maxwell's quations are contrinal ui $\partial_{\nu} F^{\mu \nu}=\mu_{0} J^{u}$.
(2) Tensor form \Rightarrow manffestly comriaat,
(8) J Jur most transform as a lonatz vector.
(4) Since $F^{M V}$ s antisumathic,$\partial_{\mu} \partial_{\nu} F^{\mu V}=0$.
I.e. $\frac{\partial J^{u}}{\partial x^{u}}=0 \quad \frac{\partial J^{0}}{\partial x^{0}}+\frac{\partial J^{i}}{\partial x^{t}}=\frac{\partial p}{\partial t}+\nabla \cdot \vec{J}=0$

THTG CONTINUITY EQUATION

UND NWT WIR MUSSEN PER

Tensor Analysin - the totaly antisymmetric tensor

- In 3 dimensions, it's tho Levi-Civita tensn

$$
\epsilon_{i j h}=\left\{\begin{aligned}
+1 & f_{m} i j 4=123,231, \\
-1 & \text { fro ijk }=213,132,321 \\
0 & \text { othernise }(i, e, \text { if ijk are not }
\end{aligned}\right.
$$ ali differant)

Note that $\epsilon_{i j h} i$ totally antisymiesticic.
E.g., $\epsilon_{j k k}=-\epsilon_{i j k} ; \quad$ or $\epsilon_{K_{j} i 6}=-\epsilon_{i j k} ;$ etc.

- In 3 dinensius, we cm construat a vector from a tenser uy caontriction of indices wite $\epsilon_{i j l}$

$$
A_{i}=\epsilon_{z j k} T_{j k} \quad\left(\sum_{j k k} \text { imphed }\right) \quad\left\{\begin{array}{l}
A_{x}=T_{y z}-T_{z y} \\
A_{y}=T_{z x}-T_{x z} \\
A_{z}=T_{x y}-T_{y x}
\end{array}\right.
$$

Examge The cross product of vectros: $\vec{C}=\vec{A} \times \vec{B}$

$$
\uparrow_{\text {recior }}^{C_{i}=E_{2 j G}^{G_{j}} \underbrace{A_{j}}_{\text {tensor }}} \quad\left\{\begin{array}{l}
C_{x}=A_{y} B_{z}-A_{z} B_{y} \\
C_{y}=A_{z} B_{x}-A_{x} B_{z} \\
C_{z}=A_{x} B_{y}-A_{y} B_{x}
\end{array}\right.
$$

- In 3 dinensins, the curl

$$
\left({\underset{\sim}{\text { rector }}}_{\nabla \times \vec{F}}^{i}\right)_{i}=G_{i} / K \underbrace{\frac{\partial}{\partial x_{j}} F_{k}}_{\text {tensor }}
$$

All thut in for 3 dinengions.
Nor gevenalize it to 4 dinarional spacetione.

Te tatally antisymnetric tensor in 4 dimensions $12,4 / 5$

$$
\in_{\mu v \alpha \beta}=\left\{\begin{array}{l}
+1 \text { if } \mu v \alpha \beta=0123 \text { or any even pruactation } \\
\text { of or } 23 \\
-1 \quad \text { if } \mu v a \beta=1023 \text { or ang odd mounturion } \\
\text { of } 0123
\end{array}\right.
$$

Propaties.
0 ollernise $[$ iie., if uva β are nst

$$
\begin{array}{ll}
\epsilon_{V \mu \alpha \beta}=-\epsilon_{\mu \nu \alpha \beta}, \text { etc. } \\
\epsilon_{2031}=-\epsilon_{0231}=-\epsilon_{0123}=-1, \text { etc. }
\end{array}
$$

- How to Construct the DUALTENSOR of FuV:

$$
\begin{aligned}
& G_{\mu v}=\frac{1}{2} \epsilon_{\mu v \alpha \beta} F^{\alpha \beta} \\
& G^{u v}=g^{u \rho} g^{\nu \sigma} G_{\rho \sigma} \quad \text { raise indtes whe } g^{u v} \\
& g^{\mu v}=\operatorname{diang}(-1,1,1,1) \\
& \text { lie., same as gav. } \\
& G_{\mu v}=g_{u p} g_{v a} G^{\rho \sigma} \text { hover mokices whè guv }
\end{aligned}
$$

Cruaial point is that $G^{\text {av }}$ is a tensor? $G^{\text {cuv }}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v_{\beta}} G^{\alpha \beta}$ is the loventy transformation.
The DUAL TENSOR

$$
\begin{aligned}
& G_{\mu v}=0 \quad \phi \quad \mu=v \\
& G_{0 i}=\frac{1}{2} \epsilon_{O i \alpha \beta} F^{\alpha \beta}=\frac{1}{2} \epsilon_{i j / 4} F^{j k}=\frac{1}{2} \epsilon_{i j h} \epsilon_{j h l} B^{l}=B^{i} \\
& G^{O Q^{\prime}}=-G_{0 i}=-B^{i} \\
& G^{i o}=+B^{i} \\
& G_{i j}=\frac{1}{2} \epsilon_{i j \alpha \beta} F^{\alpha \beta}=\frac{1}{2}^{1} \epsilon_{2 j 0 k} F^{o k}+\frac{1}{2} \epsilon_{i j k_{0}} F^{k o} \\
& =\epsilon_{i j 4} F^{o k}=\epsilon_{i j h} \frac{E^{k}}{c} \\
& G^{\ddot{\gamma}}=\epsilon_{\eta k} \frac{E^{k}}{c}
\end{aligned}
$$

Put all that together mi a 4×4 matrix: $\quad 12,4 / 6$

$G^{\mu \nu}=$| $\mu \nu$ | v | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | $-B_{x}$ | $-B_{y}$ | $-B_{z}$ |
| 1 | B_{x} | 0 | E_{z} / c | $-E_{y} / c$ |
| 2 | B_{y} | E_{z} / c | 0 | E_{x} / c |
| 3 | B_{z} | E_{y} | $-\frac{E_{x}}{c}$ | 0 |

Compare it to $F^{u v}$.

$$
G^{\mu v}(\vec{E}, \vec{B})=F^{\mu v}(-\vec{B}, \vec{E})
$$

ie, reversal of \vec{E} and \vec{B}.
Replacing $\frac{\vec{E}}{c} \rightarrow-\vec{B}$ and $\vec{B} \rightarrow \frac{\vec{E}_{C}}{c}$ corrects $F^{M v} \rightarrow G^{\mu \nu}$.
The field equations Evaluate $\frac{\partial G^{u v}}{\partial x^{2}}$.
Case $\mu=0 \quad \frac{\partial G^{\circ V}}{\partial X^{V}}=\frac{\partial G^{01}}{\partial x^{1}}=\nabla \cdot(-\vec{B})=-\nabla \cdot \vec{B}=0$
by Gens's law; $\quad \nabla_{1} \vec{B}=0$.
Case $\mu=i \quad \frac{\partial G^{i v}}{\partial x^{v}}=\frac{\partial G^{i 0}}{\partial x^{0}}+\frac{\partial G^{i j}}{\partial x^{j}}$

$$
\begin{aligned}
& =\frac{1}{c} \frac{\partial}{\partial t} B^{i}+\epsilon_{\dot{y} k} \frac{\partial}{\partial \times f} \frac{E^{k}}{c} \\
& =\frac{1}{c}\left\{\frac{\partial \vec{B}}{\partial t}+\nabla_{x} \vec{E}\right\}^{i}=0
\end{aligned}
$$

Ky Faraday's lan;

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

So, there two Maxwell quatins are singly

$$
\frac{\partial G_{u v}}{\partial x^{v}}=0 \text { where } G_{\mu v}=\frac{1}{2} \epsilon_{\mu v \rho \sigma} F^{\rho \sigma}
$$

Maxwell's equations in tensor from

$$
\begin{aligned}
& \frac{\partial F^{\mu v}}{\partial x^{v}}=\mu_{0} J^{\mu} \quad \text { where } J^{\mu}=\left[\begin{array}{l}
C \rho \\
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right] \\
& \frac{\partial G^{\mu \nu}}{\partial x^{v}}=0 \quad \text { whee } \quad G_{\mu v}=\frac{1}{2} \in_{\mu v \rho \sigma} F^{\rho \sigma}
\end{aligned}
$$

Quiz Question

Quiz Question
(A) $\mathrm{F}^{\mu \nu} \mathrm{F}_{\mu \nu}$ is a scalar, i.e., invariant with respect to Lorentz transformations.
Express $\mathrm{F}^{\mu \nu} \mathrm{F}_{\mu \nu}$ in terms of \mathbf{E} and \mathbf{B}.
(B) $F^{\mu \nu} G_{\mu \nu}$ is a scalar, i.e., invariant with respect to Lorentz transformations.
Express $F^{\mu \nu} G_{\mu \nu}$ in terms of \mathbf{E} and \mathbf{B}.

