Physics of the solar system—10 Jan

- Announcements
- Phenomena in the solar system and the physics to understand them.
 - Orbits of the planets
 - Orbits of the asteroids
 - Density of the planets
 - Volcanoes on Io, a moon of Jupiter

Class & observing

- Ast208, Planets and Telescopes, has two parts
 - Phenomena and physics of the solar system, for the most part, excluding the sun
 - Ed Loh, MF 11:30am-12:20pm
 - 60% of final grade
 - Observing techniques and projects
 - Horace Smith, Tues, 8:00-9:50pm
 - 40% of final grade

Syllabus

- The up-to-date syllabus is on angel.
- Slides will be put on angel soon after class. Link is the date.
- Office hours: Is MWF 10:00-11:00 OK?
- Reference, Carroll & Ostlie, will be on reserve in Business Library
- Clicker questions start on Fri.
 - Register your i-clicker at iclicker.com
 - You may turn in paper answers twice.
 - Lowest two will be dropped.
- Pre-class questions start on Fri.
 - Due at 8:00am on the day of the class.
- Homework (once a week)
- Midterm test
- Final exam

Phenomena

- Orbits of the planets. Kepler's Laws
- Orbits of the asteroids
- Density of the planets
- Volcanoes on Io, a moon of Jupiter

Kepler discovers Kepler's First Law of Planetary Motion

"... I was wondering why and how a sickle of just that thickness (0.00429) came into being. While this thought was driving me around, while I was considering again and again... that my apparent triumph over Mars has been in vain, I stumbled entirely by chance on the secant of the angle 5° 18', which is the measure of the greatest optical elongation. When I realized that this secant equals 1.00429, I felt as if I had been awakened from a sleep..." -Ch. 45 (a year's work later)

Kepler's Second Law 1602

- The line joining the planet and the sun sweeps out equal areas in equal amounts of time
 - Planet moves slowly when it is far from sun
 - Planet moves rapidly when close to sun

Kepler2ndLaw

Third Law 1618

- The size and periods of the planetary orbits are related by
 - $P^2 = a^3$
 - where P is the period in years and
 - a is the half of the major axis in astronomical units
- 1. A 10th object (planet?) was found beyond the orbit of Pluto. ___ has the shorter period.
 - A. Pluto
 - B. 10th object
 - C. Not enough information to answer

3rd Law

http://web.cuug.ab.ca/~kmcclary/fastsolar.html

Physics of planetary orbits

- What physics is needed to explain the orbits of the planets?
 - Gravity
 - F=ma & Newton's other laws
 - Interaction is between sun & planet

Orbits of the asteroids

- Asteroids lie between the orbits of Mars and Jupiter.
- There are orbital radii that do not occur or are very infrequent.

Physics of the orbits of asteroids

- What physics is needed to explain the orbits of the asteroids?
 - Gravity
 - Newton's laws of motion
 - Must also consider interaction of 3rd body.

Density of the planets

 The planets near the sun are dense (like rock) and the farther planets less dense (like water).

Physics to account for the density of planets

- What physics is needed to explain the density of the planets?
 - Gravity
 - Temperature
 - History

Volcanoes on Io

Images of same region, 5 months apart.

Physics of Io's volcanoes

- What physics is needed to explain why Io is hot, so that it has volcanoes?
 - The moon is not so different in size from Io, and yet it has no volcanoes.