Jovian Planets—21 Jan

- Are rings solid?
- Internal structure
 - Measuring mass
- Why does Saturn have rings and not moons? (Mon)

Are the rings of Saturn solid?

- If the rings are solid, the inner part of a ring has the same rotation period as the outer part.
- If the ring is made of little particles, how should the period and radius of a part of a ring be related?

Velocity of rings

- The velocity can be measured with the Doppler effect.
- If the rings are solid, how does velocity depend on radius?
- If the rings are made of particles, how does velocity depend on radius?

Measurement

Solid ring

$$v = \frac{R}{P} = R$$

• Kepler's 3^{rd} Law $P^2 = R^3$

$$P^2 \equiv R^3$$
$$v = R^{-1/2}$$

 Keeler, J. e., 1895, ApJ, 1, 416 measured the speed of the rings and showed they obey Kepler's 3rd law.

Internal composition of jovian planets

• How do astronomers know the composition of the jovian planets? What are the data?

Exploratory questions

- Estimate the internal pressure of a planet with mass M and radius R.
- 1. The pressure P is
 - A. GM/R²
 - B. GM^2/R^2
 - C. GM^2/R^4
 - D. GM^3/R^6

Pressure

Planet	P[TPa]
Jupiter	2.5
Saturn	0.4
Uranus	0.3
Neptune	0.3

- The internal pressure
 - 1TPa=10⁷atm
- "Atomic pressure"
 - Coulomb force $F=e^2/a_0^2$, where e is charge of electron and a_0 is Bohr radius.
 - Atomic pressure e²/a₀⁴=30TPa
 - For n=2 level of hydrogen, radius is $4a_0$. ($E_2=\frac{1}{4}E_1$ and $E=e^2/r$.) The atomic pressure is 0.12TPa.
- The pressure is high enough to modify the electronic structure of hydrogen.

Is a gas giant gaseous in the interior?

 If the pressure is low, an electron is bound to its proton. The potential energy is

$$PE = -e^2/a$$

1. Write PE in terms of density ρ . Ignore constants.

Is a gas giant gaseous in the interior?

• If the pressure is low, an electron is bound to its proton. The potential energy is

$$PE = -e^2/a$$

$$PE \sim -\rho^{1/3}$$

• If the pressure is high, Heisenberg's uncertainty relation restricts the momentum of the electron. $p \ a > \hbar$

$$KE = \frac{1}{2m}p^2 \sim a^{-2} \sim \rho^{2/3}$$

 At high density KE beats PE ⇒ an electron is not bound to its proton. Hydrogen is a metal.

Measurements & models

- Models: The pressure is so high that the phase of the gas giants is not gas in the interior.
 - Thermodynamic modes: Pressure vs density.
 - Phase transitions, e. g., gas to liquid.
- Measurements
 - Mass
 - Radius
- How can you measure the radius of Jupiter?

Measuring mass

- The gravitational acceleration between me and Earth is
 - $-GM/R^2$
- To find Earth's mass, what can I measure?