Jovian Planets—24 Jan

- What is the composition and state (gas, liquid, solid) of the jovian planets?
 - Measuring mass
- Why does Saturn have rings and not moons?

Measurements & models

- Models: The pressure is so high that the phase of the gas giants is not gas in the interior.
 - Thermodynamic modes: Pressure vs density.
 - Phase transitions, e. g., gas to liquid.
- Measurements
 - Mass
 - Radius

Measuring the radius of a planet

- 1. When it is closest, the angle between one edge of Jupiter and the other is 24arcsec. If the distance were greater, the radius of Jupiter would be ____. I am using ____ to figure this out.
 - A. Greater. Physics
 - B. Greater. Geometry
 - C. Smaller. Physics
 - D. Smaller. Geometry

Measuring mass

- The gravitational acceleration between me and Earth is $-GM/R^2$
- To find Earth's mass, what can I measure?
 - Measure the period P and radius of the moon's orbit R and use Newton's form of Kepler's 3rd Law

$$P^2 = \left(\frac{4\pi^2}{G}\right) R^3 / M$$

 $\left(\left(\frac{4\pi^2}{G}\right) = 1 \text{ for } P \text{ in year, } R \text{ in AU, } M \text{ in } M_{\text{sun}}\right)$

— Drop a ball from rest at height h and measure the time t to fall.

$$h = \frac{1}{2}(\frac{GM}{R^2})t^2$$

The mass of Pluto

• Why did the measurements of the mass of Pluto change by a lot until 1978?

Year	Mass [M _{earth}]	Notes
1931	1	Nicholson & Mayall [38][39][40]
1948	.1	Kuiper [41]
1976	.01	Cruikshank, Pilcher, & Morrison [42]
1978	.002	Christy & Harrington [43]

- 1. Which planet did not have accurate masses measured before the advent of satellites?
 - A. Venus
 - B. Mars
 - C. Jupiter
 - D. Saturn

Models

Models

- Assume composition

 - H+ He
 - Ice: water H₂O, methane CH₄, and ammonia NH₃
 - Rock
- Use physics of material at high pressure
 - Compute mass and radius
 - - Cold means motion is caused by Heisenberg's Uncertainty Relation $px \geq \hbar$
 - Isentropic means planet has not cooled since its formation.
- The measurements of mass and radius and the models show Uranus is made primarily of

 - H and He
 - Ice (H₂O, CH₄, and NH₃)

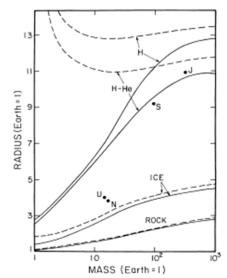


Figure 3 The mass-radius relationship for self-gravitating bodies of the same compositions as in Figure 2. The solid lines are for cold matter (T=0 K); the dashed lines correspond to the isentropes of Figure 2. The insensitivity of radius or mass for hydrogen and hydrogen-helium is a consequence of the approximate validity of $P \propto \rho^2$ (see text for discussion). The positions of the giant planets are labelled by J, S, U, and N.

Stevenson, D. J., 1982, Ann. Rev. Earth Planet. Sci. 10, 257

Models

- Models
 - Assume composition
 - H H+ He

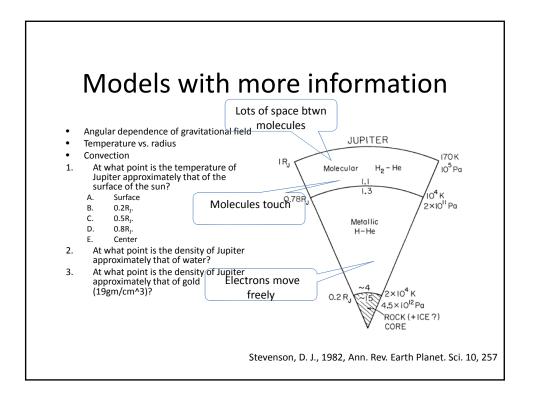
 - Ice: water H₂O, methane CH₄, or ammonia

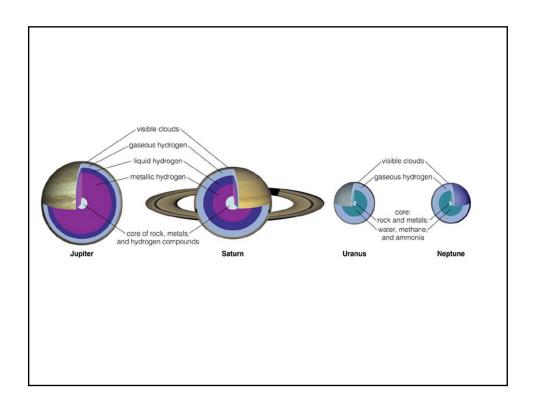
(Earth = 1)

- The measurements of mass and radius and the models show Jupiter and

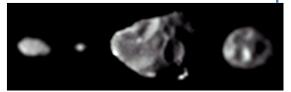
 - H and He
 - Ice (H₂O, CH₄, and NH₃)
 - Rock
- A planet made of H and He with the
 - В. С. 2

 - same mass as Earth has a radius ___ that of Earth 1.5
 - MASS (Earth=1) Figure 3. The mass-radius relationship for self-gravitating bodies of the same compositions as in Figure 2. The solid lines are for cold matter (T=0~K); the dashed lines correspond to the isentropes of Figure 2. The insensitivity of radius or mass for hydrogen and hydrogen-hellium is a consequence of the approximate validity of $P \propto \rho^3$ (see text for discussion). The positions of the glant planets are labelled by J, S, U, and N.


10

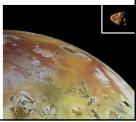

ROCK

102


Stevenson, D. J., 1982, Ann. Rev. Earth Planet. Sci. 10, 257

2.5

The Innermost Moons of Jupiter


Metis Adrastea Amalthea

Thebe

- Q5: What holds me together?
 - a. Gravity
 - b. Atomic bonds between the atoms
- Q6: What holds Io & Metis together? (Think about the shapes of Io & Metis.)
 - a. Gravity for both
 - b. Bonds for both
 - c. Gravity for Io; bonds for Metis
 - d. Gravity for Metis; bonds for Io.

Amalthea

& Io

