Rings vs. moons-28 Jan

- Why are there no big moons near planets? Why are rings close to planets?
- Differences between Jupiter's inner and outer moons
- Tides
- Roche's limit: If a moon is near its planet, the tidal force of the planet is greater than the gravitational force of the planet: the moon cannot hold together.

The Innermost Moons of Jupiter

Metis Adrastea Amalthea

Thebe

- Q5: What holds me together?
 - a. Gravity
 - b. Atomic bonds between the atoms
- Q6: What holds Io & Metis together? (Think about the shapes of Io & Metis.)
 - a. Gravity for both
 - b. Bonds for both
 - c. Gravity for Io; bonds for Metis
 - d. Gravity for Metis; bonds for Io.

Amalthea

& Io

Tidal force

 The force of the sun on a rock or a drop of water on Earth is

$$F = -GM_s m/R^2$$

• Consider rocks along the line between the earth and sun. $R=R_{es}+r$.

$$F = -GM_s m(R_{es} + r)^{-2}$$

- Important math trick: If $x \ll 1$, $(1+x)^n \approx 1 + nx$
- Taylor series: $f(x) = f(x_0) + (x x_0) f'(x_0)$ $F = -GM_s mR_{es}^{-2} + 2GM_s mR_{es}^{-3} r$
- First term is force at center of earth.
- · Second term is tidal force.

Tidal force

• Consider a rock along the line between the earth and sun. $R=R_e+r.$

$$F = -GM_s mR_{es}^{-2} \left(1 - \frac{2r}{R_{es}}\right)$$

- First term is force at center of earth.
- Second term is tidal force.
- 1. To think about the tides, consider the force on a drop of water. What does the first term do to the drop of water? Answer: The first term accelerates the drop to keep it orbiting the sun.
- 2. Why are there two high tides every day? Answer: At noon (r<0) the tidal force pulls the drop away from Earth. At midnight, the tidal force (r>0) also pulls the drop away from Earth.
- Write the answers on paper. Turn your papers in.

- 1. If a planet is twice as far from the sun, the ratio of the tidal force to the force on the planet is
 - A. ½
 - B. 1/4
 - C. 2
 - D. 4
- 2. If a planet has twice the radius, the ratio of the tidal force to the force on the planet is ____.

How big is the tidal force?

• Consider rocks along the line between the earth and sun. $R=R_e+r$.

$$F_{\text{Tidal}}/m = 2(GM_sR_{es}^{-2})(\frac{r}{R_{es}})$$

• The term $GM_sR_{es}^{-2}$ is the acceleration of the earth in its orbit. It must be $\frac{v^2}{R_{es}} = 4\pi^2R_{es}P^{-2}$.

$$\frac{F_{\text{Tidal}}}{m} = 8\pi^2 P^{-2} r.$$

• At the equator, $\frac{F_{\text{Tidal}}}{m} = 8 \cdot \pi^2 \frac{6300 km}{(\pi \times 10^7 s)^2} = 5 \times 10^{1+6-14} = 5 \times 10^{-7} \text{m/s}^2$

Roche limit. Approximation #1

- A moon orbits Jupiter. The moon is a fluid having no strength. Consider a mass m on a line joining Jupiter and the moon, where the tidal force is greatest.
- The tidal force on mass *m* is

$$F_{\text{Tidal}}/m = 2(GM_J R_{jm}^{-2})(\frac{r_m}{R_{jm}})$$

• The gravitational force is

$$\frac{F_{moon}}{m} = GM_{moon}r_m^{-2}$$

If the moon holds itself together, then

$$F_{\rm Tidal} \leq F_{moon} 2M_J R_{jm}^{-3} \leq M_{moon} r_m^{-3}$$

Roche limit. Approximation #1

- A moon orbits Jupiter. The moon is a fluid having no strength. Consider a mass m on a line joining Jupiter and the moon, where the tidal force is greatest.
- Express in term of mass density ρ .

$$2\rho_j r_j^3 R_{jm}^{-3} \le \rho_{moon}$$

 For the moon to hold itself together, it must be outside the Roche limit:

$$R_{jm} \ge 2^{1/3} (\rho_j / \rho_{moon})^{1/3} r_j$$

 For the case where Jupiter and its moon have the same density,

$$R_{jm} \ge 1.26 r_j$$

- The moon must be outside 1.26 of the radius of the planet.