Comet tails—14 Feb

- For Friday: Read about Kuiper belt and Oort Cloud
- Radiation pressure
- Magnetic fields
- Solar wind

Comet Hale-Bopp (1997)

- A comet has two tails.
 - Bluer one points away from the sun.
 - Redder one trails the comet.

Forces on a comet tail

- Sunlight shines on the comet nucleus and sublimates gas. Larger particles are released when the solids holding them sublimate.
- Assume gravity is the only force. Because of _____, the released material should be _____.
 - A. Conservation of energy
 - B. Conservation of momentum
 - C. Conservation of angular momentum
 - D. Galileo's experiment on the Leaning Tower of Pisa.
- 2.
 - A. In a cloud
 - B. In a tail pointing away from the sun
 - C. In a tail pointing toward the sun.

Comet Tempel 1. NASA Deep Impact

Force of gravity

• The comet releases a particle with mass density ρ . The force of gravity is

$$F = -GM\rho V/R^2$$

- Negative sign means force is toward the sun.
- What is V?

Radiation pressure

- Sunlight carries energy E.
- You learned in Electricity and Magnetism or in Special Relativity that sunlight carries momentum

$$p = E/c$$

1. A particle released from the comet nucleus absorbs some sunlight. The energy warms up the particle. What does the momentum do?

Radiation pressure

• The force of radiation

$$F_R = \frac{dp}{dt} = \frac{1}{c} \frac{dE}{dt}$$

• Write in term of the cross sectional area $A=\pi r^2$ and the luminosity of the sun L (watt). $\frac{dE}{dt}$ =LA/(4 πR^2)

$$F_R = LA/(4\pi cR^2)$$

- The forces of gravity and radiation are equal, if the radius of the particle $r=0.58\mu\mathrm{m}(1\mathrm{gm~cm}^{-3})/\rho$.
- 1. A particle of radius $r=1\mu m$ is ___ the sun.
 - 1. Pulled toward
 - 2. Pushed away from

Dust

Stardust mission to comet Wild 2

Larger particles

- Larger particles feel the same force as the comet nucleus. Their orbits approximately follow the comets.
 - If the radius is smaller, the orbital period is smaller.
 - They may get a kick before leaving the nucleus.
- Earth passes through comet orbits. Meteor showers
- Orionids (peak around Oct. 20-22; 20 meteors per hour) associated with Halley's comet
- Perseids (peak around August 12/13; 50-100 meteors/hour at peak) associated with comet Swift-Tuttle

Tails

dust tail

- up to 10 million km long
- smoke-sized dust particles
- driven off nucleus by escaping gases
- pushed outwards by Sun's radiation
- competing force of Sun's gravity → curve in tail.

ion tail

- Up to 100's of millions km long
- small charged particles, pushed out by charged particles from Sun (solar wind).

Motion in a magnetic field

- Force of a particle with charge e moving with velocity \vec{v} in a magnetic field \vec{B}
- $\vec{F} = e\vec{v} \times \vec{B}$
- 1. Assume \vec{v} and \vec{B} are parallel. What is the path of the particle?
- 2. Assume \vec{v} and \vec{B} are perpendicular. What is the path of the particle?

