Discovery of planet around 51 Peg—11 Apr

- Discovery of 51Pegb
 - Measuring small Doppler velocities
 - Inclination angle
 - Determining mass
- Instrumental breakthrough

Discovery of first extra-solar planet

- Michel Mayor & Didier Queloz, 1995, Nature, 378, 355, "A Jupiter-mass companion to a solar-type star"
- Doppler motion of 51 Peg

 Only motion along the line
 - Only motion along the line of sight produces Doppler shift (proportional to v).
- 3-min Q: The earth moves at 30km/s. Why is 51 Peg moving so slowly (60m/s)?

Finding velocity

 Measure velocity by cross correlating spectrum with a template

$$\frac{\sum_{\lambda} I(\lambda) I_{\text{template}} \left(\lambda \left(1 + \frac{v}{c} \right) \right)}{(I^2 I_{\text{template}}^2)^{1/2}}$$

- At the correct velocity, cross correlation is big because $I(\lambda)$ is big where $I_{template}(\lambda)$ is big.
- At an incorrect velocity, cross correlation is small.
- If spectral lines are sharp, width of cross correlation is sharp.

1 - cross correlation between spectrum $I(\lambda)$ and $I_{\text{template}}(\lambda)$

- Radial velocity for 4 runs
 - Fit constant (γ velocity) and sinusoidal.
- 1. Why is the Doppler velocity zero at certain times?
 - 1. 51 Peg is stationary at certain times
 - 2. Motion is perpendicular to line of sight
 - 3. Planet blocks the light of 51 Peg at certain times.

Mass of planet: inclination of orbit

- 1. The star's Doppler velocity is 60m/s. Assume plane of planet's orbit is in the plane of the sky. What is the star's velocity?
 - A. 60m/s
 - B. Near zero
 - C. Very large
- The actual velocity v and Doppler velocity v_r are related by $v_r = v \sin i$, where i is the inclination angle between the plane of the orbit and the plane of the sky.

Mass of planet

· Speed of a body of negligible mass orbiting the sun at 1AU

$$v = 29.8$$
km/s

• For a circular orbit, Kepler's 3^{rd} Law: $P = r^{3/2}$ and $v \propto r/P$ imply (Hwk 6)

$$v = 29.8(r/1AU)^{-1/2} km/s$$

Translate to 2-body problem to find the motion of the star (Hwk 6 &)

$$r_s = m_p / (m_s + m_p) r$$

 $v_s = dr_s / dt = m_p / (m_s + m_p) dr / dt$
 $v_s = m_p / (m_s + m_p) 29.8 (r/1AU)^{-1/2} km/s$

• In terms of Doppler velocity $v_r = v \sin i$,

$$v_r = (m_p \sin i) / (m_s + m_p) 29.8 (r/1AU)^{-1/2} \text{km/s}$$

• What is measured is

$$m_p \sin i$$

which implies a lower limit for the mass.

Mayor & Queloz estimate inclination

- Line broadening due to rotation of star
- For sun (rotational period = 25day, radius=696Mm)

 $v_{\rm rotational} = 2.0 \,\mathrm{km/s}$

Rotation broadens the spectrum by

 $v_{\rm rotational} \sin i$

M&Q measure broadening to be

 $v_{\rm rotational} \sin i = 2.2 \pm 1 \text{km/s}.$

- Activity of chromospheric lines \Rightarrow rotational period \Rightarrow $v_{\rm rotational} = 2.2 \pm 0.8 {\rm km/s}$
- Therefore

$$\sin i > 0.4$$

$$m_p < 1.2 m_{\rm Jupiter}$$

To find planets

- Need accurate velocities
- If the velocities are accurate to 300m/s, then you can find a planet with Jupiter's mass with an orbital radius of 0.01AU. (Not interesting.)
- You are M & Q thinking about finding planets. What accuracy in velocity is needed to find a Jupiter orbiting at 1AU?
 - A. 100m/s
 - B. 30m/s
 - C. 10m/s
 - D. 3m/s
 - E. 1m/s

Velocity of star vs semi-major axis for $\rm m_{\rm p}{=}m_{\rm Jupiter}$