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Experiment 2 

Random Error and Basic Statistics 
Homework 2: turn in the second week of the experiment.  This is a difficult homework set, 
but a very important one.  Allow adequate time to do a good job. These are exercises on 
formulas you will use all term. 

Read sections 3.1-3.10 of Taylor (you can skip 3.2).  Read the handout on the important things in 
uncertainty calculations.  Look carefully at the definition of independence in the handout.  

Do the problems below.  They and the analysis and discussion requested below will help prepare 
you for the uncertainty calculations needed for this lab, and indeed for uncertainty calculations 
all term. Using a spreadsheet is usually easier than a calculator. If you decide to do the additions 
in quadrature on a calculator, note that the conversion from rectangular to polar coordinates 
automatically calculates √(x2 + y2) for given x and y. 

1)    If x has been measured as 4.0 ± 0.1 cm, what should I report for x2 and x3?  Give 
percent and absolute uncertainties, as determined by rule (3.10) for a power.   

2) A student measures a = 50 ± 5, c = 60 ± 2, e = 5.8 ± .3, all in cm, and calculates the 
sums a+c and a+e. Assuming the original errors were independent and random, find the 
uncertainties in her answers (using rule 3.16, “errors add in quadrature”).  If she has 
reason to think the original errors are not independent, find the uncertainties in her 
answers (using rule 3.17, “errors add directly”).  Summarize your calculations in a table. 
Useful headings might be Sum, Value, δq(independent), δq(not independent).  Indicate 
with an asterisk those cases in which the second uncertainty (in c or e) can be entirely 
ignored, assuming the uncertainties are needed with only one significant figure. 
Comment on the comparative sizes of the uncertainties in each case.  

3) A student makes the following measurements 

a = 5   ± 1 cm,   b = 18   ± 2 cm,   c = 12   ± 1 cm,  t = 3.0   ± 0.5 s,  m = 18   ± 1 gm 

Calculate the fraction uncertainty of each quantity (q=a,b,c,t,m) and put this in a table 
with headings  

q       value      δq       δq /q (%). 

Compute the quantities q=a+b+c and q=m b/ t , their uncertainties, and percentage 
uncertainties for the two cases of independent uncertainties, and not independent 
uncertainties.  Show the formulas you will use, and arrange your results in a table with 
headings as below. 



PHY191    Experiment 2:  Random Error and Basic Statistics   7/12/2011          Page 2

     Independent     not independent 
q value   δq       δq /q (%)    δq      δq /q (%)       most important  variable 

For the “most important variable”, indicate which variable contributes most strongly to 
the uncertainty for q. Why did the importance of δb change between the q=a+b+c and the 
q = m b/ t cases? 

Explain whether the uncertainty of a+b-c will be the same, or different from, the 
uncertainty of a+b+c.  From this answer, explain whether the fractional uncertainty of 
a+b+c will be larger or smaller than the fractional uncertainty of a+b-c, and why.   

4) A student is studying the properties of a resistor.  She measures the current flowing 
through the resistor and the voltage across it as 

 I = 2.10 ± 0.02 amps     and      V = 1.02 ± 0.01 volts. 

a) What should be her calculated value for the power delivered to the resistor, P = IV, 
with its uncertainty?  b) What for the resistance R = V/I (in ohms)?  Assume the original 
uncertainties are independent.  With I in amps and V in volts, the power P comes out in 
watts and the resistance in ohms.  Start by evaluating the fractional uncertainty of I, and 
V in percent, then calculate δP/P in percent following the example on p 62.  Show 
algebra, not just numbers. Finally, derive δP from δP/P.  For b), see if you can avoid 
repeating the entire calculation.  

5)  In an experiment on the conservation of angular momentum, a student needs to find 
the angular momentum L of a uniform disc of mass M and radius R as it rotates with 
angular velocity ω.  She makes the following measurements: 

M = 1.10 ± .01 kg,     R = .250 ± .005 m,   ω = 21.5 ± 0.4 rad/s 
And then calculates L as L = ½ MR2 ω. (The factor ½ MR2 is just the moment of inertia 
of the uniform disc.)  What is her answer for L with its uncertainty?  (Consider the three 
original uncertainties independent and remember that the fractional uncertainty in R2 is 
twice that in R.) For this and any calculations in the lab involving products proceed in the 
same way as you did for 4). 

 

1. Introduction 

Contrary to the naïve expectation, the experiments in physics typically involve not only 
the measurements of various quantitative parameters of nature. In almost all the situations 
the experimentalist has also to present an argument showing how confident she is about 
the numeric values obtained. Among other things, this confidence in the validity of the 
presented numeric data strongly depends on the accuracy of the measurement procedure. 
As a simple example, it is impractical to measure a mass of a feather using the scale from 
the truck weighing station, which is hardly sensitive to the weight less than a few pounds. 
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Another challenge has to be met when the scientist tries to compare the results of her 
experiment with the data from another experiments, or with the theoretical predictions. 
Since the conditions of the measurement almost always vary from an experiment to an 
experiment, and since they are also different from the idealized situation of the theoretical 
model, the compared values most likely will not match each other exactly. The task is 
then to figure out how important the factors creating this discrepancy are. If these factors 
are stable (do not change from measurement to measurement) and noticeable, they are 
called systematic errors. If, on the contrary, these factors are variable, they are 
called random, or statistical, errors. An important fact is that the uncertainty due to the 
random errors can be reduced by increasing the number of measurements to average over 
the random variations. 

The main purpose of this experiment is to introduce you to methods of dealing with the 
uncertainties of the experiment. The basic procedures to correctly estimate the 
uncertainty in the knowledge of the measured value (the error of the measurement) 
include:  

 correct treatment of the random errors and systematic errors of the experiment 
(Taylor Chapters 4 and 5); 

 rounding off the insignificant digits in the directly measured and calculated 
quantities (Chapter 2 Taylor and the Reference Guide). 

2. Goals 

1. Understand basic statistical measures of uncertainty. 
2. Learn when standard deviation vs. standard deviation of the mean is appropriate. 
3. Distinguish between systematic and random errors. 
4. Learn one method for estimating the random errors. 
5. Learn how one way to estimate systematic errors. 
6. Test for a statistically significant difference from an expected value. 
7. To measure a time with accuracy better than half a percent. 

3. Preliminary discussion (10-15 minutes). 

Before the lab, you are asked to read and understand the theoretical material for this lab 
(Exp 2 and Taylor). Before the experiment starts, your group needs to decide which 
information will be relevant to your experiment. Discuss what you will do in the lab and 
what preliminary knowledge is required for successful completion of each step. Warning: 
this lab is a bit short, and the next is a bit long. Don’t leave early: but start Exp3. 

Think hard about organizing your work in an efficient way. What measurements will 
you need to make? Go through your lab manual with a highlighter, then make checklist of 
the needed measurements. What tables or spreadsheets will you need to make to organize 
the calculations data? How should you use Kgraph to expedite your calculations and unit 
conversions (when necessary)?  What tables will you need to summarize your analysis 
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and conclusions from the data? This lab will have more explicit reminders about tables 
than future labs, but you should be thinking about this organization of data taking, data 
reduction, and summarization in every lab. 

Questions for the preliminary discussion 

You should write your own answer to each question in your lab book, but leave space to 
change it after discussion.  If you do change your answer, say why. 

3.1 Calculators and computers typically return results with as many digits as possible, 
including digits well beyond our measurement uncertainty. What procedure will you 
follow to systematically get rid of these insignificant digits? 

3.2 What tables will you need to record your input data?  What tables will you need to 
summarize your results?  Scan the lab, write down your tables, then see Appendix. 

 

Random Uncertainties 

4.1 Introduction In this experiment we ask you to perform a simple repetitive 
measurement in order to investigate random and systematic errors.  The idea is that we 
will compare the time interval from the large digital “clock” at the front of the room, with 
a more precise instrument (the hand timers).  We want to perform a test to see if the time 
scale of the digital clock is correct or not—that is, whether using the large digital clock 
would cause systematic errors were we to use it to measure time.   

Although the timers have very accurate time scales, we need to use rather imprecise 
hand-eye coordination to operate them. The systematic error of the timers is small, and 
guaranteed by the manufacturer.  But you will have to measure the random error from 
your hand-eye coordination, since at the start you don’t know it.  We will do it by 
repeating measurements of the same time interval on the large digital clock, and using the 
variation of the measurements to calculate the random error in a single time 
measurement.  We will then use the fact that by repeatedly measuring time intervals, we 
can decrease the uncertainty of our estimate of the wall clock counting rate.  So we are 
using an understanding of random errors to measure an effect (clock count rate) which 
might be a systematic error if used in another experiment without correcting for it. 

4.2 Time Measurements 

At the front of the room is a large digital clock. Assume that it counts at a constant rate, 
but do not assume that the rate is one count per second. The clock will count from 1 to 
20, blank out for some unspecified length of time, and then begin counting again. To 
measure the clock's count rate, you will be given a timer whose systematic error is less 
than 0.001 seconds for time intervals of ten seconds or less. However, you will be relying 
on hand-eye coordination, which means your measurements will have random 
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uncertainties. Your reaction time is unavoidably variable. You may also be systematically 
underestimating or overestimating the total time.  

4.2.1 Observe the clock.  Write down whether you believe the clock is counting 
reasonably close to one count per second. Also, before doing any measurements, guess 
how much your reaction time would vary from one measurement to the next (this is your 
initial guess for your random error). 

4.2.2 Now choose a counting interval at least 10 counts long, and time 25 of them. Avoid 
starting a timing interval on the first count. Use the first three or more counts to develop a 
tempo with which to synchronize your start. Write down in your notebook the initial and 
final clock count you use to define the interval.  

One person should time while the other records the data on the data sheet belonging to 
the person timing. To avoid an unconscious skewing of data, the person timing should not 
look at the data sheet until all 25 measurements have been recorded. This is essential; 
otherwise, you will introduce a bias into your measuring procedure! Make a few practice 
runs before taking data. Exchange places with your partner, and time 25 more counting 
intervals. Each person will have a data sheet with 25 timings recorded on it.  Assuming 
you have prepared well for the lab, you should both be able to analyze your own data.  In 
any case, you should provide your own answers to the questions at the end.  

5. Data Analysis 

5.1 Plot your data first!   Then if it is wildly non-Gaussian, make another trial before 
sinking a lot of analysis time.  Use Kgraph to make a histogram from your twenty-five 
measurements. The x axis represents the time measured T, and the y axis the number of 
measurements falling in the kth time bin. The data should be mainly peaked at a center 
value, and roughly symmetrical.  You can consult with your instructor to see whether to 
take more data.   

To analyze your data, you will calculate 3 quantities, the mean, the standard deviation, 
and the standard deviation of the mean value.  If the formulas don’t make sense to you, 

check Taylor chapter 4 again. The average or "mean" time per interval, T (pronounced 
“T bar”), is 
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where the Σ stands for a summation, Ti  represent the i-th single measurement of the time 
per interval, and N =  the number of measurements. This formula directs you to add up 

the N values of T, and divide by N.  Next you can use this value of T  to compute the 
standard deviation, , of the values of T, defined as:  
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These two quantities, T and , are characteristics of the distribution of your time 
measurements: the “center” (mean) and the “width” (standard deviation) of the 
distribution.  As you make more measurements, your estimates should stabilize and 
converge to constant “true” values, though since each individual measurement you make 
varies randomly about the true values, your estimates will also vary, though less with 
more data available. 
 
Finally, you can estimate the standard deviation of the mean.  It is related to the standard 
deviation of the individual values: 

N
m




                                                                  (3) 
The standard deviation of the mean m , is the best estimate of the uncertainty in the 
measurement of the mean. Note that, unlike the standard deviation, this uncertainty can 
be made arbitrarily small by taking a sufficiently large number of measurements.  

5.2 To demonstrate that you understand them, write out the calculations of these three 
quantities explicitly (say with Excel but not using Excel statistical formulas) for the first 3 
measurements (N=3), as if these were the only data you had taken. You may then use the 
computer for the full 25 values. Write in your notebook which item from the output of 
Kgraph Functions | Statistics does this calculation for you (How could you check that you 
are looking at the right entry? Hint: try N=3 first before N=25).  You will need the values 
of σ and σm in what follows. 

5.3 Now predict howT, σ and σm vary with N, the number of measurements involved in 
their calculation.  Then use Kgraph to calculate them for the first N=3, 5, 10, and 25 (all) 
of your measurements, again imagining that you had only the first 3, 5, 10, or 25 data 
points.  Then comment whether on your predictions for the changes as N gets larger are 
approximately correct.  In particular, why do σ and σm behave differently? 

5.4 Compare your N=25 value of  with your previous guess of the variability of your 
reaction time. 

5.5 Now use Kgraph to make your final histogram from your twenty-five measurements.  
Adjust settings so the bin width to a “round” value about w ≈Show the calculation 
in your notebook. How can you set the bin width Kgraph is using?   

5.6 Clearly mark the points of  T  and T    for your measurements. These quantities can 
be shown to be the best estimate of your measurement.   The region included in the range 
 should contain about 68% of your data points if your errors are random and 
consequently the distribution of your measurements is normal or Gaussian (Taylor, 
chapter 5). What fraction of your data lies within this range? 

5.7 Extra Credit: (Taylor Chapter 5.2 – 5.3) Draw on your histogram an appropriate 
Gaussian distribution given by a curve (function) of the form 
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To do this, you need values for the constants in the function g(T).  For T  and  use your 
best estimates for the mean and standard deviation of your time measurements.  Choose 

A to match your histogram.  Hint: what is the value of the function g(T) at T= T?  

Calculate g(T) at five points. (Hint: Kgraph and Excel both use exp for the exponential 
function).  Draw the points by hand on your histogram plot. Then connect these points 
with a smooth curve, which should resemble the Gaussian curves in Taylor. With a finite 
number of measurements such as 25, your histogram may not resemble the expected 
"bell" shape curve to a great degree. 

6. Drawing Conclusions from the Timing Measurements 

6.1 Check to see is there a (statistically) significant discrepancy in the time measured 
by the large clock. We want to check the hypothesis that the large digital clock is running 
correctly. Statistical significance is tested for not by just looking at the size of the 
difference and saying “that seems small” or “looks big to me”.  Rather we compare the 
relative size of the difference with the uncertainty of our measurement.  If the difference 
isn’t substantially larger than our uncertainty, then we say that our statistical analysis left 
us with information insufficient to reject our original hypothesis, and we say that the 
differences are not statistically significant.  We make the test quantitative by calculating 
the size of the discrepancy from expectations in units of the uncertainty of that difference.  

The discrepancy we want is that between the average time counted, T , with its expected 
value Texp = (actual count/s) × (the number of counts in your interval).  Your instructor 
will give you the actual counts/sec which was set before the start of the experiment.  

Following the uncertainties summary in the Reference Guide, we use D =  T-  Texp. We 

use σm for δD, since that is our uncertainty in how well we know T, and there is no 
uncertainty in our prediction, Texp .  Then  

m

TT
t


exp

                                                                       (5) 

This expression is the same as Eq. 5.67 on p. 150 of your text, and one of the boxed 
equations in the summary on uncertainties. Here, in accord with standard statistical 
notation, t has the meaning of the number of the standard deviations of the mean needed 
to cover the difference between the mean and expected times. In this equation, t is not a 
time: it has no units since both the numerator and denominator are in seconds. The 
statistic t is handy because we can make such a comparison for any measurement: the 
numerator D and denominator δD always have the same units, so t is always means 
“number of standard deviations”, a pure number on the same (dimensionless) scale, no 
matter what quantity was originally being measured.  Following the handout, and 
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common statistical practice, we will say the deviation is statistically significant if |t|>2, 
that is the discrepancy is more than twice as big as our uncertainty.   

As you will see later, this should happen by chance only about 5% of the time.  Notice 
also if we make a sloppy measurement with a huge uncertainty δD, it will be hard to ever 
learn anything: it would be rare to have a large enough discrepancy to find a statistically 
significant difference from our starting assumption. 

Based on this calculation, is Tcompatible with Texp ?  That is, is the discrepancy 
(statistically) significant? 

6.3 Calculate the time interval per clock tick (How is this related to T?).  Does it appear 
that the clock tick is 1.0 seconds, as we assumed at the beginning?  By how many % does 
your time differ from 1.0 seconds?  What is the uncertainty in your estimate? 

6.4 Suppose you had recorded only your first 3 measurements. What would you have 
concluded about the existence of a significant discrepancy? Were the remaining 
measurements necessary in your opinion? Give a quantitative justification. 

6.5 Suppose you measured with the hand timer a different counter with a known period, 
and found your measured period was (statistically significantly) too low.  What kind of 
flaw in your measurement procedures might have caused this bias? 

6.6 What was the muddiest point of this experiment?  Where, specifically, should the 
write-up be improved?  

 


