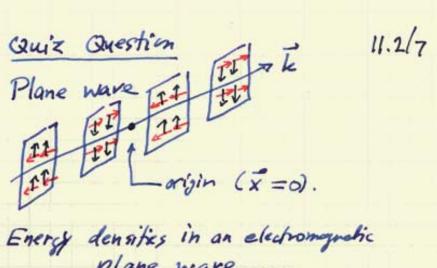
Light is very deep...

The First Book of Moses, Called **Genesis**1 The Creation


- 1 In the beginning God created the heaven and the earth.
- 2 And the earth was without form, and void; and darkness *was* upon the face of the deep. And the Spirit of God moved upon the face of the waters.
- 3 ¶ And God said, "Let there be light": and there was light.
- 4 And God saw the light, that *it was* good: and God divided the light from the darkness.
- 5 And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.

... in Hebrew

$$\nabla \cdot \mathbf{E} = 0$$
 and $\nabla \cdot \mathbf{B} = 0$
 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ and $\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$

... in field equations

- plane ware
- (A) Defenuine $U_{5}(\vec{x},t)$ et $\vec{x}=0$.
- (B) Determine um (X,t) at \$ =0.

Express both answers in Ferms of Eo;

(A)
$$\vec{E}(\vec{x},t) = Re \ \vec{E} e^{i(\vec{k}\cdot\vec{x}-\omega t)} = \vec{E}_0 \ \omega_S(\vec{k}\cdot\vec{x}-\omega t)$$
 $u_{\vec{E}}(\vec{0},t) = \frac{8}{2} \vec{E}^2(\vec{0},t) = \frac{6}{2} \vec{E}_0^2 \ \omega_S^2(\omega t)$

(B) $u_{\vec{M}}(\vec{0},t) = \frac{1}{2\mu_0} B^2(\vec{0},t) = \frac{1}{2\mu_0} B_0^2 \cos^2(\omega t)$

[Rubshhaze $B_0 = \frac{1}{2} (\vec{0},t) = \frac{1}{2\mu_0} (\vec{0},t) = \frac{1}{2} (\vec{0},t) = \frac$

Exam - Friday Feb 26

Maxwell's equations in matter 11.3/1

· Start with the fundamental quating

(3)
$$\nabla x \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Now consider the effects of macroscopic matter, i.e., matter with many atoms (~6×10²³). We'll treat the charge and convent in matter in an average way — a very good appreximation because N is so large

error $\sim \frac{1}{\sqrt{N}} \sim \frac{1}{\sqrt{6 \times 10^{25}}} \sim \frac{1}{10^{12}}$ Could be accurate to 12 decimal places.

- · Two of Maxwell's greations do not sevend in matter
 - (2) D.B = 0 (# magnetic momo poles)
 - (3) $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (a field effect)

The other two depend in sources, i.e., matter, for which we'll make macroscopic approximations.

11.3/2 · Charge density Smicro (x,t) = \(\int e_2 \cdot 8^3 (\vec{x} - \vec{x}_i \cdot t)\) (N>6 x10^23 sum over all charged (1.2., subatoxic) particles or, in quantum mechanis SMICRO (8, +) = = = er /4: (8, A)2 Now define the macroscopic average PIX, t) = To Su PMICRO (X", t) d3x' where SV is a large and small volume at 2. SV 6 large compared to an atom, and small compared to the full system => p (x, +) Recall from Chapter 6, dielectric moderials, $P(\bar{x},t) = S_{F}(\bar{x},t) + S_{B}(\bar{x},t)$ Free charge; Bound charge; all charge tant charge of particles that is not bound charge are bound in atoms SB = - V. P fucting \$\var{z}\$ with t P = polarigation = mean dep de movent density (another macroscopic average)

This is familiar for static fields from Chys. 6.

The equations for the macros copie electric field
$$\vec{E}(\vec{x},t)$$
.

The equations for the macros copie electric field $\vec{E}(\vec{x},t)$.

The electric field $\vec{E}(\vec{x},t)$.

Then $\nabla \cdot \vec{E} = \frac{\beta F}{60} + \frac{\beta E}{60} = \frac{\beta F}{60} - \frac{\beta E}{60}$

Then $\nabla \cdot \vec{E} = \frac{\beta F}{60} + \frac{\beta E}{60} = \frac{\beta E}{60} + \frac{\beta E}{60}$

Then $\nabla \cdot \vec{E} = \frac{\beta F}{60} + \frac{\beta E}{60} = \frac{\beta E}{60} + \frac{\beta E}{60}$

Then $\nabla \cdot \vec{E} = \frac{\beta F}{60} + \frac{\beta E}{60} = \frac{\beta E}{60} + \frac{\beta E}{60}$

The electric field for the macros copie electric fields from Chys. 6.

This is familiar for static fields from Chys. 6.

11.3/4 Electric Current Density - magnitization; ferromagnets; also from electric polarization OP Fundamental questins VXB = 40 J + 1060 3E. Now, what is J(x,t)? 7. 5A St = SQ : Any proces that moves charge contributes to Fat). 3 kinds of current • JF = free corrent density; charged particles making untside atoms JM = VXM; currents in magnetic dipoles, if My varies with position & $M(\bar{x},t) = \frac{1}{8V} \sum_{i=1}^{\infty} \tilde{m}_i$ Picture Mz in creases with n. (VXM), is not zero: carl M = - 2M = 3 Do you see the net current in -y direction?

The 3rd being g current

Polarization Current
$$\vec{J}_p = \frac{\partial \vec{P}}{\partial t}$$

Polarization Current $\vec{J}_p = \frac{\partial \vec{P}}{\partial t}$
 $= current \vec{J}_p = \frac{\partial \vec{P}}{\partial t}$

Picture $\vec{P}_1 + \vec{D}_2 + \vec{D}_3 + \vec{D}_4 + \vec{D}_4 + \vec{D}_5 + \vec{D}_4 + \vec{D}_5 + \vec{D}_5$

• Now the Ampère-Marwell equation 11.3/6

$$\nabla \times \vec{B} = M_0 (\vec{J}_F + \nabla \times \vec{M} + \frac{3\vec{P}}{3t}) + M_0 \cdot \vec{B} \cdot \frac{3\vec{E}}{3t}$$

$$\nabla \times (\vec{B}_{M_0} - \vec{M}) = \vec{J}_F + \frac{3}{3t} (\vec{G} \cdot \vec{E} + \vec{P})$$

$$\vec{V} \times \vec{H} = \vec{J}_F + \frac{3\vec{P}}{3t}$$

$$\vec{D} \quad \text{is ane to both a state of the sta$$

Quiz Questin $\frac{113/7}{Naxwell's}$ quatins in $\frac{113/7}{V}$. (\overrightarrow{EE}) = 0 \overrightarrow{V} . \overrightarrow{B} = 0 \overrightarrow{V} × \overrightarrow{E} = $-\frac{\partial \overrightarrow{B}}{\partial t}$ \overrightarrow{V} × (\overrightarrow{E}) = $\frac{\partial}{\partial t}$ (\overrightarrow{E}) \overrightarrow{D} = \overrightarrow{E} and \overrightarrow{H} = \overrightarrow{B} /n(A) Then determine the Speed g light, U for light paning through the glass.

(B) Determine the under g refraction, n g the glass.