Motion of one planet and a star-25 Feb

Announcements:

- Monday: Missouri (Ask Me State) Club.
- Homework 5 not accepted after today. Answers will be on angel after class.
- Send me equations to put on cheat sheet before 8:00am, Fri, 4 March.
- Friday: Midterm test. Covers topics through comet tails (first part of 18 Feb). Does not cover Pluto and Kuiper Belt (last part of 18 Feb)

Outline:

- Motion of 2 bodies can be changed into the motion of the center of mass and the orbit of a single body.
- Kepler’s Laws

The problem

A planet and the sun are in orbit. There are no other bodies.
m_{s} at \vec{r}_{s}
m_{p} at \vec{r}_{p}
The momentum is

$$
\vec{P}=m_{s} \frac{d \vec{r}_{s}}{d t}+m_{p} \frac{d \vec{r}_{p}}{d t}
$$

is conserved.
Reason: There are no forces acting on the two bodies from the outside. Therefore $\vec{F}=\frac{d \vec{P}}{d t}=0$.

1. Make up a case where the sun emits radiation and momentum is not conserved.
2. Make up a case where the sun emits radiation and momentun is conserved.

Consider only cases where momentum is conserved.

Choose the center of mass to be stationary

Write

$$
\vec{P}=M \frac{d}{d t}\left(m_{s} \vec{r}_{s}+m_{p} \vec{r}_{p}\right) / M, \text { where the total mass } M=\left(m_{s}+m_{p}\right) .
$$

Define the center of mass position

$$
\vec{R}=\left(m_{s} \vec{r}_{s}+m_{p} \vec{r}_{p}\right) /\left(m_{s}+m_{p}\right)
$$

The center of mass position moves at constant speed. No additional information.
Change to a frame where the center of mass is at the origin. $\vec{R}=0$.
Let

$$
\vec{r}=\vec{r}_{p}-\vec{r}_{s}
$$

Define the reduced mass μ by

$$
\mu=m_{s} m_{p} /\left(m_{s}+m_{p}\right) \text { or } \frac{1}{\mu}=\frac{1}{m_{s}}+\frac{1}{m_{p}}
$$

Then solve

$$
m_{s} \vec{r}_{s}=-m_{p} \vec{r}_{p}=-m_{p}\left(\vec{r}+\vec{r}_{s}\right)
$$

to get
$\vec{r}_{s}=-\mu / m_{s} \vec{r}$
$\vec{r}_{p}=\mu / m_{p} \vec{r}$

1. In the center of mass frame, \qquad is the vector from the sun to the planet and \qquad is the vector from the origin to the planet.
A. \vec{r}_{p}, \vec{r}
B. \vec{r}, \vec{r}_{p}

New equation of motion

The equation of motion

$$
m_{p} \frac{d \vec{v}_{p}}{d t}=-G m_{s} m_{p}\left(\vec{r}_{p}-\vec{r}_{s}\right) /\left(\left|\vec{r}_{p}-\vec{r}_{s}\right|\right)^{3}
$$

can be written

$$
\mu \frac{d \stackrel{\rightharpoonup}{v}}{d t}=-G M \mu \vec{r} / r^{3} \text { where } \stackrel{\rightharpoonup}{v}=\frac{d \vec{r}}{d t}
$$

We have successfully changed a 2-body problem into a one-body problem. There are two equations of motion. (1) The center of mass moves at constant speed. (2) In the center of mass frame is a new object with mass μ that is pulled by a stationary mass M .

1. Suppose I solve the equation of motion. How do I figure out where the planet is? The position of the planet is \qquad \vec{r} from the center of mass.
A. exactly
B. a bit beyond
C. a bit under
2. Suppose two stars of equal mass m_{\odot} orbit. In the one-body problem, the mass that pulls to cause the acceleration is
A. $\frac{1}{2} m_{\odot}$
B. m_{\odot}
C. $2 m_{\odot}$

Conserved quantities

The total energy is

$$
E=\frac{1}{2} m_{s} v_{s}^{2}+\frac{1}{2} m_{p} v_{p}^{2}-G m_{s} m_{p} / r
$$

Write in terms of r and

$$
E=\frac{1}{2} \mu v^{2}-G M \mu / r
$$

I could have done that directly, since I changed the equation of motion from a 2-body to a one=body problem.
The angular momentum is

$$
\vec{L}=\vec{r} \times \vec{p} \text { where } \vec{p}=\mu \vec{v}
$$

Angular momentum is conserved because the force is radial.

$$
\frac{d}{\mathrm{dt}} \vec{L}=\left(\frac{d}{d t} \vec{r}\right) \times \vec{p}+\vec{r} \times \frac{d}{d t} \vec{p}
$$

The first term is proportional to $\vec{p} \times \vec{p}$. The second term is proportional to $\vec{r} \times \vec{r}$.

Kepler's 2nd Law, Law of Equal Areas

Consider $\vec{L} / \mu=\vec{r} \times \vec{v}=\vec{r} \times \frac{d \vec{r}}{d t}$.

$$
L /(2 \mu)=\frac{1}{2} r \frac{d r_{\perp}}{d t}
$$

This is the area swept out in $d t$. Since the angular momentum is conserved, the area swept out per unit time does not change.

```
p1 = {1, 0}; p2 = {1.1, .2};
Graphics[{LightGray, Polygon[{{0, 0}, p1, p1 + {0, .18}}],
    Black, Arrow[{{0, 0}, p1}], Arrow[{{0, 0}, p2}], Arrow@{p1, p2},
    Text[Style["\nabladt", Medium], (p1 + p2) / 2, {-1.5, 0}],
    Text[Style["\mp@subsup{\nabla}{+}{}dt", Medium], p1 + {0, .1}, {.5, 0}]}]
```


Results

Kepler's First Law The orbit of a planet is an ellipse with the sun at one focus.
The definition of an ellipse: The sum of the distance between a point and the foci is a constant.
The semimajor axis is a.
The eccentricity is e.

Kepler's 3rd Law

$$
P^{2}=4 \pi^{2} a^{3} /(G M)
$$

Energy \mathcal{E} and angular momentum \mathcal{L} or the values per unit mass E and L (called specific energy and angular momentum)

$$
\begin{aligned}
& L=\left[G M a\left(1-e^{2}\right)\right]^{1 / 2} \\
& E=-\frac{1}{2} G M / a
\end{aligned}
$$

1. A comet (which has high eccentricity) and a planet (which has low eccentricity) have the same period. S1: The specific energy of the comet is smaller. S2: the specific angular momentun of the comet is less.
A. Both true.
B. S 1 is true. S 2 is false.
C. S1 is false. S2 is true.
D. Both false.

8 K07 Orbits.nb

