Unbound orbits \& position vs time-21 Mar

- Outline
- Derivation of Kepler’s 3rd Law
- Unbound orbits
- Example
- Solving for position vs time
- Formation of the Oort Cloud. Reading for class on Fri.

Kepler's 3rd Law

We already derived the law of equal areas. $\frac{1}{2} L=\frac{d A}{d t}$.

$$
\frac{1}{2} L P=A
$$

where P is the period.
The area of an ellipse is π (semi major axis) (semi minor axis). The semi minor axis is $a\left(1-e^{2}\right)^{1 / 2}$.

$$
\frac{1}{2}\left[G M a\left(1-e^{2}\right)\right]^{2} P=\pi a^{2}\left(1-e^{2}\right)^{1 / 2} .
$$

Solve for P to get

$$
P^{2}=4 \pi^{2} a^{3} /(G M)
$$

Translate this from a 1-body to a 2-body problem.
$M \rightarrow M_{s}+m_{p}$
$a \rightarrow$ distance bewteen sun and planet
$P \rightarrow$ peiod of the orbit

Unbound orbits

We integrated the equation of motion and got
$r=p /(1+e \cos \theta)$
where $p=L^{2} /(G M)$
Q: What values of e have we already discussed?
A. $0<e \leq 1$
B. $e>1$
C. $e=1$

Unbound orbits

We integrated the equation of motion and got

$$
r=p /(1+e \cos \theta)
$$

where $p=L^{2} /(G M)$

- The case $0 \leq e<1$

1. The orbit is bound.
2. The orbit is an ellipse The definition of an ellipse: the distance to the sun r and the distance to the other focus r ' are related by $r+r^{\prime}=$ constant
3. $p=a\left(1-e^{2}\right)$, where a is the semimajor axis.
4. $E=-G M /(2 a)$

- The case $e=1$

1. The orbit is unbound. For $\cos \theta \rightarrow-1, r \rightarrow \infty$.
2. You can show that the orbit is a parabola with the sun at a focus. The definition of a parabola: the distance from the sun r and the distance to a line (called the directrix) r ' are equal.
3. p is twice the perihelion distance.
4. $E=0$

- The case $e>1$

1. The orbit is unbound. For $e \cos \theta \rightarrow-1, r \rightarrow \infty$.
2. The orbit is a hyperbola. Definition of a hyperbola: the distance to the sun r and the distance to the other focus r^{\prime} are related by $r^{\prime}-r=$ constant
3. $p=a\left(e^{2}-1\right)$, where a is the semimajor axis.
4. $E=G M /(2 a)$

http://en.wikipedia.org/wiki/Hyperbola

Example. Runaway stars and planets

A planet is in a circular orbit around a star. The star suddenly explodes and keeps a fraction f of its mass. Find the minimum f so that the planet stays with its star.

2-minute assignment: Write a thought on paper and be prepared to share it with the class.

- Calculation

Total energy

$$
\begin{aligned}
& \mathrm{E}=-\frac{1}{2} \mathrm{GM} / a \\
& \mathrm{KE}=+\frac{1}{2} \mathrm{GM} / a \\
& \mathrm{PE}=-\mathrm{GM} / a
\end{aligned}
$$

The explosion does not affect the KE; it does change the PE.
If f of the mass remains,

$$
\mathrm{PE}=-f \mathrm{GM} / a
$$

For planet to leave the star,
$\mathrm{KE}+\mathrm{PE}>0$

$$
E=\left(\frac{1}{2}-f\right) \mathrm{GM} / a \geq 0
$$

The planet leaves if $f \leq \frac{1}{2}$.

Formation of the Oort Cloud

- Kuiper belt: Short period comets
- small inclinations
- prograde orbits.
- Oort Cloud: Long period orbits
- large inclinations
- retrograde and prograde orbits
- \quad Distribution of semimajor axis peaks at $20,000 \mathrm{AU}$

Fernández, J. A., 1997, Icarus, 129, 106, "The Formation of the Oort Cloud and the Primitive Galactic Environment"

- Read up to the paragraph starting with "A passing star" on p 109 . The paper will be put on angel with a link on the syllabus.
- Notation
- q is the perhelion distance
- For a random walk in position with step size L, the average of position ${ }^{2}$ after N steps is $N L^{2}$.

Q: You are blindfolded. You step 1m randomly forward and backward. After 100 steps, how far have you gone?
A. 100 m
B. 10 m
C. 0 m

8 03-21.nb

- Questions to help you read the paper
- Q1: What is $E_{\text {orig }}$ at the bottom of p 106 ? Why does it have units of AU^{-1} ?
- Q2: What is the main point of this paper? Express it in a few sentences.
- Pre-class questions will be due on Fri.

