
Oscillations

4a. The Simple Harmonic Oscillator

In general  an oscillating system with sinusoidal time In general, an oscillating system with sinusoidal time 
dependence is called a harmonic oscillator. Many 
physical systems have this time dependence: 
mechanical oscillators, elastic systems, AC electric 
circuits, sound vibrations, etc.

In particle mechanics, the simplest harmonic 
oscillator consists of a mass attached to a spring, 
moving without friction. The figure shows a block 
with mass m attached to one end of a spring and p g
moving without friction on a horizontal floor; the 
other end of the spring is attached to an immovable 
wall.

We’ll solve the dynamics of the block, assuming the 
spring obeys Hooke’s law.
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Spring Forces
Robert Hooke, a contemporary of Isaac Newton (*), Robert Hooke, a contemporary of Isaac Newton ( ), 
found that spring forces can be described by some 
simple properties …

The spring has an equilibrium length.

If stretched or compressed by a small 
displacement, x, a restoring force pulls or pushes 
the spring toward equilibrium length.

Within the elastic limit, the force is linear in the 
displacement; F(x) = −k x. 

(*) Hooke and Newton were acquaintances 
but their relationship was not friendly
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Dynamics of  a mass on a spring

The motion of the block is 
an example of single-
particle dynamics and one 
dimensional motion.

The equation of motion is

Or, 
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It is well-known that the solutions of this 
equation are sinusoidal: sin ωt  or cos ωt or, 
most generally, a linear combination

m

x(t) = A cos ωt + B sin ωt

The constants, A and B, must be determined 
from initial conditions or some other 
information about the oscillator. They cannot be 
determined from the differential equation!
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Example 1. General initial conditions.

Suppose we are given initial conditions,

x(0) = x and v(0) = vx(0) = x0 and   v(0) = v0.

The general solution is

x(t) = A cos ωt + B sin ωt

v(t) = −ω A sin ωt + ω B cos ωt

The initial conditions are

x(0) = A = x0 and   v(0) = ω B = v0.

Thus the solution is

x(t) = x0 cos ωt + (v0/ω) sin ωt

Example 2. Suppose the initial position is x = 
0, and the amplitude of oscillator is R. Then 
what is x(t)?

After a little thought you’ll see that the solution 
is x(t) = R sin ωt.

Example 3. The mass is 1 kg and Hooke’s p g
constant is 100 N/cm. What is the frequency 
of oscillation?
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Example 4. Energy
Consider the general solution

x(t) = A cos ωt + B sin ωt
(A) Calculate the kinetic and potential energy.
(B) Calculate the time averages of K and U.
(C) Calculate E and verify that it is constant.
(D) Calculate the amplitude of oscillation.
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Epilogue (4a)
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Oscillations

4b – The Damped Oscillator

Resistance force;  viscosity

Restoring force;  Hooke’s law







Summary
Results in terms of the original parameters
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Damped Oscillator
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Note that v = 0 at ω1 t = π, 2π, 3π, 4π, ...
These are the maximum displacements from x = 0.ese a e t e a u d sp ace e ts o 0
The maximum positive displacements occur at

ω1 t = 0, 2π, 4π, 6π, …
i.e., ω1 tn = 2π n   for   n = 0, 1, 2, 3, 4 …

xmax,n = A exp(−β tn) = A exp (−2π β n/ω1)






