Oscillations
4a. The Simple Harmonic Oscillator

In general, an oscillating system with sinusoidal time
dependence is called a harmonic oscillator. Many
physical systems have this time dependence:
mechanical oscillators, elastic systems, AC electric
circuits, sound vibrations, etc.
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Spring Forces

Robert Hooke, a contemporary of Isaac Newton (*),
found that spring forces can be described by some
simple properties ...

® The spring has an equilibrium length.

= If stretched or compressed by a small
displacement, x, a restoring force pulls or pushes
the spring toward equilibrium length.

= Within the elastic limit, the force is linear in the
displacement; F(x) = -k x.

wall
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F is the force exerted by the spring.

(*) Hooke and Newton were acquaintances
but their relationship was not friendly.
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Dynamics of a mass on a spring

00000

0 X X

wall

The motion of the block is
an example of single-

particle dynamics and one
. dimensional motion.

The equation of motion is MX =F(X) = —kx

Or, .. 2 Kk
X=—wX where w=_.—

m
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Example 1. General initial conditions.

Suppose we are given initial conditions,
x(0) =x, and v(0) = v,.

Example 2. Suppose the initial position is x =
0, and the amplitude of oscillator is R. Then
what is x(t)?

Example 3. The mass is 1 kg and Hooke’s
constant is 100 N/cm. What is the frequency
of oscillation?
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Example 4. Energy
Consider the general solution

X(t) = A cos ot + B sin ot
(A) Calculate the kinetic and potential energy.
(B) Calculate the time averages of K and U.
(C) Calculate E and verify that it is constant.
(D) Calculate the amplitude of oscillation.
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Example: Sliding Friction
Now suppose the coefficient of

(kinetic) friction for the block k m
sliding on the surface is U. Deter- :
mine x(t). .
1
0
—_— X
1 —— 2
one half cycle
First consider one half cycle of the oscilla- X0
tion. The coordinate x(t) varies from posi-
tive amplitude x to negative amplitude x;.
The velocity is instantaneously 0 at x( an 0
X] ----------------- :
3 4

During this part of the motion,

mE = Fﬁx+ﬂq;

(The block is moving to the left so the fric-
tional force is toward the right, +umg.)

The solution is

Kl¢) = —‘:EJ" + Acoswt + Bsin wt

where the initial condictions require

A=(x—"%) ot B=0o

The negative amplitude, which occurs at
ot=m,is

I R Rk

Thus the amplitude of oscillation
decreases by 2umg/k for each half cycle.

Exercise: Analyze the energy.
Calculate the change of poten-
tial energy for one half cycle
(from max displacement xy to min

displacement x;) and the work
done by friction.

Show that AU = W.




Epilogue (4a)
Epilog (4a) - Complex Exponential Functions
X =-02 X (1)

The general solution of the harmonic oscillator equation (1) may be written
in several ways. In the lecture | wrote

X(t)=Acosot+Bsinot (2)

which has two parameters (A, B) which can be adjusted to match initial
values or other information about the motion.

Another form of the general solution is
x(t)=Ccos(mt-0) (3)

whifch also has two adjustable parameters (C = amplitude and ¢ = phase
shift).

To see that either (2) or (3) can be used as a general solution of (1), note
that (3) could be written

X(t)=Ccosd coswt + Csing sinmt (4)
which has the same form as (2), with

A=Ccosdo and B=Csino. (5)
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Sinusoidal Functions and Complex Exponentials
X =—®2 X (1)

We could also write a general solution of (1) as a linear combination of com-
plex exponentials,

X(t) =0 e'O 4 Be Ot (6)

where o and B are complex numbers. [ 1= sqrt(-1) ]
(Recall Euler’s equation.)

But x must be real. It’s the displacement of the mass from equilibrium,
which can’t be a complex number. So why would we introduce complex
numbers into the solution, if we know the solution must be real?

The reason for using complex exponentials (which is common in physics) is
that calculations may be simpler with exponentials (even complex exponen-
tials than with sines and cosines. So we write the solution using complex
functions and parameters for intermediate calculations. But at the end of
hth calculations, we must take the real part of the expressions to get the
physical solutions. The trick is : take the real part at the end.

Euler’s equation and related equations

el®=coso+isinb e~ =cos9-isino

e18+e—le Sing = ele_e—le

Cos 0 = ) )




Oscillations

4b - The Damped Oscillator
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Summary
Results in terms of the original parameters

Over- 5 strong
damped b? > 4mk damping

Critically
dar '

optimal

b2 = 4mk

Damped Oscillator
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Note that v=0 at o, t = &, 2x, 3~ 4, ...
These are the maximum displacements from x = 0.
The maximum positive displacements occur at
o, t =0, 2x, 4r, 67, ...
ie,o;t,=2xn for n=0,1,2,3,4 ...
Xmax,n = A exp(-B tn) =Aexp (27 1’1/(01)
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