PHY820 Homework Set 3

1. [5 pts] Goldstein, Problem 1-10.
2. [5 pts] Two particles, characterized by charge q_{1} and q_{2}, respectively, and by mass of m_{1} and m_{2}, move under the influence of each other in an external uniform electric field \vec{E}. Examine the Lagrangian for the particles with external and mutual Coulomb potential terms and demonstrate that the particle motion may be studied by considering separately the motion of the center of mass and the motion in the particle relative separation.
3. [5 pts] Goldstein, Problem 1-16.
4. [10 pts] Consider a particle of mass m and charge q moving in a uniform constant magnetic field \vec{B} pointing in the $+z$ direction.
(a) Demonstrate that \vec{B} can be written as $\vec{B}=\vec{\nabla} \times \vec{A}$ with $\vec{A}=\frac{1}{2} \vec{B} \times \vec{r}$. Prove that equivalently in cylindrical coordinates, $(\rho, \phi, z), \vec{A}=\frac{1}{2} B \rho \hat{\phi}$.
(b) Write the Lagrangian for the particle in cylindrical coordinates and find the three corresponding Lagrange equations.
(c) Describe in detail those solutions of the Lagrange equations in which ρ is a constant. Sketch a particle trajectory following those solutions.
5. [5 pts] Goldstein, Problem 1-23.
