PHY820 Homework Set 3

- 1. [5 pts] Goldstein, Problem 1-10.
- 2. [5 pts] Two particles, characterized by charge q_1 and q_2 , respectively, and by mass of m_1 and m_2 , move under the influence of each other in an external uniform electric field \vec{E} . Examine the Lagrangian for the particles with external and mutual Coulomb potential terms and demonstrate that the particle motion may be studied by considering *separately* the motion of the center of mass and the motion in the particle relative separation.
- 3. [5 pts] Goldstein, Problem 1-16.
- 4. [10 pts] Consider a particle of mass m and charge q moving in a uniform constant magnetic field \vec{B} pointing in the +z direction.
 - (a) Demonstrate that \vec{B} can be written as $\vec{B} = \vec{\nabla} \times \vec{A}$ with $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$. Prove that equivalently in cylindrical coordinates, (ρ, ϕ, z) , $\vec{A} = \frac{1}{2} B \rho \hat{\phi}$.
 - (b) Write the Lagrangian for the particle in cylindrical coordinates and find the three corresponding Lagrange equations.
 - (c) Describe in detail those solutions of the Lagrange equations in which ρ is a constant. Sketch a particle trajectory following those solutions.
- 5. [5 pts] Goldstein, Problem 1-23.