PHY820 Homework Set 5

1. [5 pts] Goldstein, Problem 2.2. Use the Noether's theorem and consider invariance under the transformation $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=\vec{r}_{i}+\epsilon \vec{n} \times \vec{r}_{i}$, where \vec{n} is the direction vector for the axis of rotation and ϵ is an infinitesimally small angle of rotation. First show that the component of angular momentum $\vec{n} \cdot \vec{L}$ is conserved under that invariance in the case of $L=T-V$. In SI units, the generalized electromagnetic potential for particle i is $U_{i}=q_{i} \Phi_{i}-q_{i} \vec{v}_{i} \cdot \vec{A}_{i}$.
2. [10 pts] Goldstein, Problem 2-14.
3. [10 pts] A ladder of length L and mass M rests against a smooth wall and slides without friction on the wall and the floor. Assume that the ladder is initially at rest at an angle α_{0} with respect to the floor. Use the method of Lagrange undetermined multipliers to find the angle α_{1} at which the ladder leaves the wall.
4. [5 pts] By considering the respective Lagrangian, determine the integrals of motion for a particle moving in a uniform field $V=-\vec{F} \cdot \vec{r}$.
5. [10 pts] Goldstein, Problem 2-21.
