PHY820 Homework Set 6

1. [10 pts] Goldstein, Problem 1.22.
2. [5 pts] Goldstein, Problem 3.14.
3. [10 pts] Goldstein, Problem 3-12. Refrain from following the book's advice of $m=+1$; for convergence, the potential must vanish faster with the distance.
4. [5 pts] The addition to the potential energy $V=-k / r$ of a small correction $\delta V(r)$ makes the bounded orbits deviate from closed; after each turn, the perihelion shifts by a small angle $\delta \phi$. Find $\delta \phi$ for (a) $\delta V=\beta / r^{2}$ and (b) $\delta V=\gamma / r^{3}$.
5. [10 pts] An exam problem: Discuss the 2-dimensional motion of a particle moving in an attractive central-force described by the force law $f(r)=-k / r^{\alpha}$, where k is positive and $3>\alpha>2$.
(a) Write down the equations of motion in polar coordinates;
(b) Show how conservation laws can be used to derive the formal equation for the orbit of motion;
(c) Describe the nature of the orbits for various possible initial energies and angular momenta. (Graphical methods can be very useful.)
6. [5 pts] Goldstein, Problem 3.18. Use of the Runge-Lenz vector can be beneficial.
