PHY820 Homework Set 7

1. [5 pts] A smooth wire is bent into the shape of a helix, with cylindrical polar coordinates $\rho=R$ and $z=\lambda \phi$, where R and λ are constants and the z axis points vertically up (and gravity vertically down). Using z as your generalized coordinate, write down the Lagrangian for a bead of mass m threaded on the wire. Find the Lagrange equation and hence the bead's vertical acceleration \ddot{z}.
2. [10 pts] Goldstein, Problem 3.31.
3. [5 pts] A proton of energy 4 MeV scatters off a second proton at rest. One proton comes off at an angle of 30° in the lab system. What is its energy? What is the energy and scattering angle of the second proton?
4. [10 pts] From an exam: Two particles of masses m_{1} and $m_{2}\left(m_{1} \neq m_{2}\right)$ collide. The initial velocity velocity of particle 1 is \vec{v}_{1}, while the particle 2 is initially at rest. The initial impact parameter is b_{0}, as shown. The particles interact through a repulsive potential $V=V_{0} /\left|\vec{r}_{1}-\vec{r}_{2}\right|^{4}$. (a) Find the magnitude of net angular momentum and the net energy in the center of mass, in terms of provided quantities. (b) Obtain an equation for the rate of change of the separation $r=\left|\vec{r}_{1}-\vec{r}_{2}\right|$ in time. Find the distance of closest approach between the particles.
(c) Consider a situation where b_{0} is unknown, but the magnitude v_{1}^{f} of the final velocity of particle 1 has been measured in the laboratory frame. Find the angle β between the final laboratory velocities of particles 1 and 2, given v_{1}^{f}. (Use conservation laws whenever possible.)

5. [5 pts] Goldstein, Problem 4-6.
6. [5 pts] Goldstein, Problem 4-10.
