Physics 842 – Fall 2012 Classical Electrodynamics II

Notation differences between Landau & Lifshitz and PHY842 lectures & homeworks

Physical quantity	Landau & Lifshit	z PHY842 lectu	res and homeworks
Chapters 1 and 2:			
electric charge	e		q
dielectric susceptibility			Xe
Chapter 3, section 26 has some confusing definitions:			
chemical potential			μ
internal chemical potential			μ_{int}
energy flux density			jε
heat current		- фј	$\mathbf{j}_{\mathbf{q}} = \mathbf{j}_{\mathbf{\epsilon}} - \mathbf{\mu} \mathbf{j}_{\mathbf{n}}$
Landau & Lifshitz redefine ϕ on page 97 as $\phi + \zeta_0/e$ to include the chemical potential. The new ϕ introduced by L&L is equal to μ/q in my notation. The modern way to view this is to say that the total chemical potential is a sum of an "internal" term and an "external" term: $\mu = \mu_{int} + \mu_{ext} = \mu_{int} + q\phi$, where ϕ is the usual electrostatic potential. (The external term could also include the effect of gravity or any other external force.)			
thermopower			S
Chapter 4:			
total current density			j or j _{total}

contributions to current $\rho \mathbf{v} = \mathbf{c} \nabla \times \mathbf{M} + \mathbf{j}$ $\mathbf{j}_{total} = \mathbf{c} \nabla \times \mathbf{M} + \mathbf{j}_{free}$ surface current density \mathbf{g} J

(I do not like the L & L use of ρv for total current density, since "bound currents" include electric spins, which cannot be thought of as a charge density ρ moving at velocity **v**.)