Physics 842 - Fall 2012 Classical Electrodynamics II

Problem Set \#3 - due Tuesday October 2

1. A cylindrical capacitor consisting of two long, coaxial, thin cylindrical conductors of radii a and b, is lowered vertically into a dielectric liquid. A potential difference V is applied between the plates and the liquid level rises by a height h inside the capacitor. Show that the dielectric susceptibility of the liquid is equal to:
$\chi_{e}=\frac{\left(b^{2}-a^{2}\right) \rho g h \ln (b / a)}{V^{2}}$, where ρ is the density of the liquid.
2. When you do problem 2 at the end of Section 8 in Landau \& Lifshitz (see list of problems for Quiz \#3 below), calculate the potential everywhere in space (not just inside the cavity). When you are finished, take the limit $\mathrm{b} \rightarrow 0$, which corresponds to a solid sphere, and check that both the field inside the sphere and the total dipole moment of the sphere agree with the results we derived in class.
3. Problem 3 at the end of Section 8 in $\mathrm{L} \& \mathrm{~L}$ is similar to problem 2. Do the same things you did for problem 2.
4. In class I derived the potential everywhere in space for the situation of a dielectric sphere placed in a uniform electric field. I also showed that the effective surface bound charge density can be obtained from $\sigma_{\text {bound }}=\mathbf{P} \cdot \mathbf{n}$, where \mathbf{P} is the polarization and \mathbf{n} is unit vector pointing normal to the surface. Calculate the discontinuity in the perpendicular component of the electric field, $\mathbf{E} \cdot \mathbf{n}$, at the surface, and show that is equal to $4 \pi \sigma_{\text {bound }}$.

Quiz \#3

The quiz on Thursday, October 4, will consist of one of the following problems:
■ Problems 1 to 4 on Problem Set \#3
■ Problems 1, 2, 3, and 5 at the end of Section 7

- Problems 2 and 3 at the end of Section 8
(I realize that this list is partially redundant.)

