Physics 842 - Fall 2012 Classical Electrodynamics II

Problem Set \#5 - due Tuesday October 23

1. Imagine that at time $t=0$ we place a localized macroscopic charge distribution $\rho(\mathbf{r})$ inside a conducting medium of conductivity σ. Describe how the charge density evolves in time. (The time scale for the charge to disperse is called the Maxwell relaxation time.)
2. A capacitor of arbitrary shape is filled with a dielectric medium with dielectric constant ε. If that same capacitor were filled with a conducting medium of conductivity σ, it would have a resistance R. Find the capacitance C.
3. The magnetoresistivity tensor relates the electric field to the current density, $E_{i}=\rho_{i k} j_{k}$. For the Drude model of magnetoconductivity we discussed in class, calculate $\rho_{i k}$ for a uniform conducting medium in the presence of a constant magnetic field B pointing in the z direction. (I essentially did this for 2D in class. Calculate the full 3D $\rho_{i k}$ tensor.)
4. A vacuum diode consists of two parallel plates (cathode and anode) separated by a distance d, held at a constant potential difference ϕ_{0}, inside an evacuated chamber. Electrons are emitted from the cathode by heating it. (We will assume that the velocity of the emitted electrons is initially zero, which is a good approximation for large enough ϕ_{0}.)
a) If the current density in the diode is j, calculate the electron velocity v and space charge density ρ as a function of x, where $x=0$ at the cathode and $x=d$ at the anode. Assume that j is small enough that you can ignore the effects of ρ on the electric field.
b) For large j we cannot neglect the space charge. Using Poisson’s equation and current conservation, derive a differential equation for $\phi(\mathrm{x})$.
c) Find a family of solutions to your equation that satisfy the boundary conditions $\phi(0)=0$ and $\phi(\mathrm{d})=\phi_{0}$. In the "space-charge limited" case, we have the additional condition that $\mathrm{d} \phi / \mathrm{d} x=0$ at $x=0$. In this case, show that the current density j is proportional to $\phi_{0}{ }^{3 / 2}$. This is a system that does not obey Ohm's Law!
Quiz \#5

The quiz on Thursday, October 25, will consist of one of the following problems:
■ Problems 1-4 on Problem Set \#5
■ Problems 1-3 at the end of Section 21

