
Initialization

Orbits & paths of light rays—26 Jan
è Announcements

è Homework 2 is due on 1/31. The link is on the syllabus on angel.

è We start cosmology on Tues. We are ahead of schedule. Read about the Robertson-Walker metric

è Outline

è Orbits that are like Newtonian ones

è Orbits that are not like Newtonian ones

è Orbit for a light ray

Differences between Newtonian orbits and orbits with General 
Relativity
Recall:

(1)The length2 of the 4-velocity is -1.
(2) u0 is conserved because the metric is independent of time.
(3) uf (in the f direction) is conserved because the metric is independent of f.

From (1–3), we derived
e2-1

2
= 1

2
 d r

d t
2 + Veff r,

where Veff r = -M

r
+ l2

2 r2
- M l2

r3

Scale r and angular momentum l by dividing by M .

ü When orbits are possible
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Caption: Effective potential for Einstein's theory (blue) and for Newton's theory (purple). The dotted line is 1

2
e2 - 1.

Orbit exists if e2-1

2
> Veff r for some r, and there are two turning points. The turning points are where e2-1

2
= Veff r.

ü Values of energy and angular momentum for Earth

Radius of the orbit in units of Msun. 
r M
ConvertAstronomicalUnit  mSun, 1
1.01276  108

Angular momentum in units of Msun

l2 =M a 1 - e2
l M = a1 - e2M 12

l  SqrtConvertAstronomicalUnit  mSun, 1
10 063.6

Energy E = 1

2
e2 - 1 = - 1

2

M

a

e1  ConvertmSun  2  AstronomicalUnit, 1
4.93701  109
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Caption: Veff r for Earth’s orbit. The energy 0.8 E is shown to make it visible. The dimensionless angular momentun is 10063.6.

Q: For what energy or range of energies is the orbit elliptical? Parabolic? Hyperbolic? 
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ü New orbits in General Relativity 
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Caption: Caption: Effective potential for Einstein’s theory (blue) and for Newton’s theory (purple). The dimensionless angular
momentun is 4.3.

We already know that the shapes of the orbits are not the same as in the Newtonian case.

Q: What is a new kind of orbit that is not possible with the Newtonian theory? 

ü Plots

ü When orbits are not possible

plotVEffective3.5, .053, PlotRange  .06, .02
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Caption: Caption: Effective potential for Einstein’s theory (blue) and for Newton’s theory (purple). The dimensionless angular
momentum is l M = 3.5.

Find extrema of Veff r
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SolveDvEffr, l, r  0, r

r 
1

2
l2  l 12  l2 , r 

1

2
l2  l 12  l2 

If l M > 1212, there are two extrema. If l M < 1212, the extrema are imaginary.

Sqrt12.
3.4641

plotVEffectiveSqrt12, .053, PlotRange  .06, .02
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Q: You are near a black hole. What do you do to fall into the black hole? What do you do to prevent falling into the black hole?

Particles without mass. Light
For planets, we used

um =  d t

d t
, d r

d t
, d q

d t
,

d f

d t
.

We could just as well have used 4-momentum pm =m um.
For photons, that is not valid because „t is 0.

Instead of proper time, use a parameter l. Then

pm =  d t

d l
,

d r

d l
,

d q

d l
,

d f

d l
.

We will solve a particular orbit and find out what l is in that case.

Recall:
(1) The length of the 4-momentum p is 0.
(2) p0 is conserved because the metric is independent of time. Define 

e = p0 = 1 - 2 M

r
 d t

d l
.

(3) pf (in the f direction) is conserved because the metric is independent of f.

Define

l = r2 d f

d l

From (1–3), we get
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-1 - 2 M

r
-1

e2 + 1 - 2 M

r
-1  d r

d l
2
+ l2

r2
= 0.

 e

l
2 = 1

l2
 d r

d l
2
+Weff r,

where Weff r = 1

r2
1 - 2 M

r
.

A  photon  is  headed  for  r = b  from  the  star.  The  parameter  b  is  called  the  impact  parame-
ter.

b

f

 sin f = b r, and cos f
d f

d l
= - b

r2

d r

d l
. Rewrite as

cos f l = -b d r

d l

As rØ¶, LHSØ l.

At rØ¶, e = „t

„l
. Since the length of the 4-momentun of a photon is 0, „t

„l
= „r

„l
at rØ inf . Therefore

eØ „r

„l

RHSØ b e. Therefore b = l e.

1

b2
= 1

l2
 d r

d l
2
+Weff r
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Caption: Weff r for b = 10 M .

Q: When b = 10 M , photons go to in to r = 8.6 M  and then back out again. What is the path of the photon in space?

Find the peak of Weff .

r . SolveDwEffr, r  0, r1
3
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Solve for b

b  Sqrt1  wEff
3 3

If b < 2712 M , photons go toward the mass and never go back out.

If the sun were a point mass, then the critical impact parameter for capture is

Sqrt27 mSun

7675.41 Meter

ü Plots

What is the parameter l? Path of a radial light ray

e = 1 - 2 M

r
 d t

d l
 and l = r2 d f

d l
. What is l?

The orbit equation is

 e

l
2 = 1

l2
 d r

d l
2
+Weff r,

where

Weff r = 1

r2
1 - 2 M

r
.

We have differential equations for d r

d l
 and 

d f

d l
, which we can solve. Do the simple case of an almost radial light ray, for which

l r` 1. In that case  e

l
2 = 1

l2
 d r

d l
2
+Weff r becomes

e2 =  d r

d l
2

.

The solution is
r = e l.

Surprise: the parameter l is not time. For a radial light ray, the parameter l is the radial coordinate divided by the energy at ¶.
(Recall e is the energy at rØ¶.)

Calculate the coordinate time.

e = 1 - 2 M

r
 d t

d l

= 1 - 2 M

r
 d t

d r

d r

d l

For radial paths, e2 =  d r

d l
2

. Substitute to get

d t = ≤d r 1 - 2 M

r
-1

= ≤d r 1 + 2 M

r-2 M


Use + for outgoing paths and – for incoming paths. Substitute r = e l to get

D t = e l2 - l1 + 2 M log
l2-2 M e
l1-2 M e 

If the energy of the photon is bigger, the parameter l changes more slowly as r and t change. However the path rt is indepen-
dent of energy.
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