13 Mar 2012—Equivalence Principle. Einstein's path to his field equation

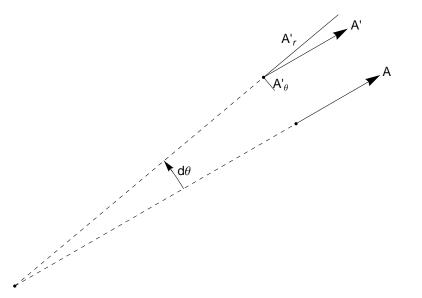
- 15 Mar 2012—Tests of the equivalence principle
- 20 Mar 2012—General covariance. Math. Covariant derivative
- 22 Mar 2012-Riemann-Christoffel curvature tensor.
 - Outline
 - Finish covariant derivatives
 - Riemann-Christoffel curvature tensor

Covariant derivative of a contravariant vector

How do you take derivatives of tensors?

Requirements

- 1) The derivative of a tensor must be a tensor
- 2) The derivative must measure a physical quantity and not merely a quirk of the coordinate system.



Example of a quirk of the coordinate system: A constant vector field A^{μ} in two dimensions with polar coordinates. Even though A is constant, $\frac{\partial A^{r}}{\partial \theta}$ is not zero.

Mathematical problem: The derivative means to compare A(x + dx) and A(x).

Rather than rethink this, use what we did for the equation of motion.

We already found that the equation of motion is

$$\frac{du^{\alpha}}{d\tau} + \Gamma^{\alpha}{}_{\beta\gamma} \, u^{\beta} \, u^{\gamma} = 0.$$

The terms $\frac{du^{\alpha}}{d\tau}$ and $\Gamma^{\alpha}{}_{\beta\gamma} u^{\beta} u^{\gamma}$ are not tensors. Proof: $\Gamma^{\alpha}{}_{\beta\gamma}$ is zero in a gravity-free frame. If it were a tensor, it would be zero in all frames.

We derived the equation of motion by differentiating the 4-velocity. Rewrite

$$\frac{du^{\alpha}}{d\tau} = \frac{dx^{\beta}}{d\tau} \frac{\partial u^{\alpha}}{\partial x^{\beta}} = u^{\beta} \frac{\partial u^{\alpha}}{\partial x^{\beta}}$$

and insert to get

$$u^{\beta} \left(\frac{\partial u^{\alpha}}{\partial x^{\beta}} + \Gamma^{\alpha}{}_{\beta\gamma} u^{\gamma} \right) = 0.$$

Contraction is a tensor operation. Therefore $\frac{\partial u^{\alpha}}{\partial x^{\beta}} + \Gamma^{\alpha}{}_{\beta\gamma} u^{\gamma}$ is a tensor.

For any contravariant vector A^{α} ,

$$\nabla_{\beta}A^{\alpha} = \frac{\partial A^{\alpha}}{\partial x^{\beta}} + \Gamma^{\alpha}{}_{\beta\gamma}A^{\gamma}$$

is a tensor. This is called the covariant derivative. We have succeeded in defining a "good" derivative.

Another notation:

$$A^{\alpha}_{;\beta} = A^{\alpha}_{,\beta} + \Gamma^{\alpha}_{\beta\gamma} A^{\gamma}$$

Is $A^{\alpha}_{;\beta} \equiv \nabla_{\beta} A^{\alpha}$ covariant or contravariant in the index β ?

Example: For 2-dimensional polar coordinates, the metric is $ds^2 = dr^2 + r^2 d\theta^2$

The non-zero Christoffel symbols are (8.17)

$$\Gamma^{r}_{\theta\theta} = -r$$

$$\Gamma^{\theta}_{\theta r} = \Gamma^{\theta}_{r\theta} = 1/r.$$

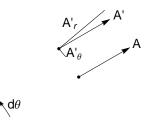
$$A^{r}_{;r} = A^{r}_{,r}$$

$$A^{r}_{;\theta} = A^{r}_{,\theta} - rA^{\theta}$$

$$A^{\theta}_{;r} = A^{\theta}_{;r} + 1/rA^{\theta}$$

$$A^{\theta}_{;\theta} = A^{\theta}_{,\theta} + 1/rA^{r}$$

The covariant derivative of the r component in the r direction is the regular derivative. If a vector field is constant, then $A^{r}_{;r} = 0$. The covariant derivative of the r component in the θ direction is the regular derivative plus another term. Even if a vector field is constant, $A^{r}_{;\theta} \neq 0$. The Γ term accounts for the change in the coordinates.



Q: Which of these four terms does the figure illustrate?

The idea of a covariant derivative of a vector field A in the direction a. Is this a good definition?

$$\nabla_a A^{\alpha} = \lim_{\epsilon \to 0^+} \frac{1}{\epsilon} [A(x + \epsilon a) - A(x)] ???$$

However, the components of $A(x + \epsilon a)$ may be different even if the vector is the same, because the coordinates are changing. We must move $A(x + \epsilon a)$ back to x before comparing. Moving is called parallel transporting. This is what the Γ term does.

$$\nabla_a A^{\alpha} = \lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \{ \text{parallel transport}[A(x + \epsilon a)] - A(x) \}$$

Q: Simplicio: Covariant derivatives are irrelavant. I want to know about gravity. In what way is Simplicio mistaken?

Plot

How to measure curvature

In what object is gravity encoded? What does the Equivalence Principle say? Gravity is encoded in a general coordinate transformation.

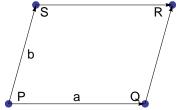
Q: Can you measure curvature by looking at a point?

- Answer

Q: How to detect curvature of the Earth's surface.

Carry a vector, which points east, from the north pole to the equator.

Consider a vector field A_{γ} . Move from point P to Q to R. Move from P to S to R. Compare.

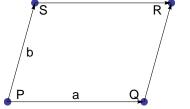


The change in A in going from P to Q is

$$dA_{\gamma PQ} = \left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}$$

Q: Why is this not a tensor equation?

Consider a vector field A_{γ} . Move from point P to Q to R. Move from P to S to R. Compare.



The change in A_{γ} in going from P to Q is

$$d A_{\gamma PQ} = \left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}$$

Why is this not a tensor equation?

- Answer

$$\nabla_{\alpha} A_{\gamma} = \frac{\partial A_{\gamma}}{\partial x^{\alpha}} - \Gamma^{\sigma}{}_{\gamma\alpha} A_{\sigma}$$

This is a tensor equation:

 $d A_{\gamma PQ} = \nabla_{\alpha} A_{\gamma} a^{\alpha}$ The change in *A* in going P \rightarrow Q \rightarrow R is

 $d \operatorname{A} \gamma_{\operatorname{PQR}} = \nabla_{\beta} (\nabla_{\alpha} A_{\gamma}) a^{\alpha} b^{\beta}$

The change in *A* in going $P \rightarrow S \rightarrow R$ is

 $d A_{\gamma \, \text{PSR}} = \nabla_{\alpha} (\nabla_{\beta} A_{\gamma}) a^{\alpha} b^{\beta}$

The change in a round trip $P \rightarrow Q \rightarrow R \rightarrow S \rightarrow P$ is

 $d A_{\gamma PQR} - d A_{\gamma PSR} = \left[\nabla_{\beta} \left(\nabla_{\alpha} A_{\gamma} \right) - \nabla_{\alpha} \left(\nabla_{\beta} A_{\gamma} \right) \right] a^{\alpha} b^{\beta}$

Q: In MA1, I learned that $\frac{\partial^2}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x}$. Why doesn't the quantity in brackets [] = 0?

Fig

How to measure curvature

Consider a vector field A_{γ} . Move from point P to Q to R. Move from P to S to R. Compare.

The change in A_{γ} in going from P to Q is

$$d A_{\gamma PQ} = \left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}$$

Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative

$$\nabla_{\alpha} A_{\gamma} = \frac{\partial A_{\gamma}}{\partial x^{\alpha}} - \Gamma^{\sigma}{}_{\gamma\alpha} A_{\sigma}$$

The change in a round trip $P \rightarrow Q \rightarrow R \rightarrow S \rightarrow P$ is

$$dA_{\gamma PQR} - dA_{\gamma PSR} = \left[\nabla_{\beta} (\nabla_{\alpha} A_{\gamma}) - \nabla_{\alpha} (\nabla_{\beta} A_{\gamma}) \right] a^{\alpha} b^{\beta}$$

In MA1, I learned that $\frac{\partial^2}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x}$. Why doesn't the quantity in brackets [] = 0? The parts involving partial derivatives of the

vector A_{γ} is 0. The remaining parts involve the Christoffel symbol times A. Therefore, the nonzero part can be written as

$$d A_{\gamma PQR} - d A_{\gamma PSR} = -A_{\sigma} R^{\sigma}{}_{\gamma \alpha \beta} a^{\alpha} b^{\beta}.$$

What does this say?

In a round trip, a vector field A_{γ} changes by the contraction of what?

The parts involving partial derivatives of the vector A_{γ} is 0. The remaining parts involve the Christoffel symbol times *A*. Therefore, the nonzero part can be written as

$$d A_{\gamma PQR} - d A_{\gamma PSR} = -A_{\sigma} R^{\sigma}{}_{\gamma \alpha \beta} a^{\alpha} b^{\beta}$$

Q: What does this equation say?

The tensor $R^{\sigma}_{\gamma\alpha\beta}$ is called the Riemann-Cristoffel curvature tensor.

Q: If I swap α and β , is R the same? $R^{\sigma}_{\gamma\alpha\beta} = R^{\sigma}_{\gamma\beta\alpha}$? What are the last two indices for?

Calculating $R^{\sigma}_{\gamma\alpha\beta}$:

$$\begin{split} \nabla_{\beta} \left(\nabla_{\alpha} A_{\gamma} \right) &= \nabla_{\beta} \left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}} - \Gamma^{\sigma}{}_{\gamma\alpha} A_{\sigma} \right) \\ &= \frac{\partial^{2} A_{\gamma}}{\partial x^{\beta} \partial x^{\alpha}} - A_{\sigma} \frac{\partial}{\partial x^{\beta}} \Gamma^{\sigma}{}_{\gamma\alpha} - \Gamma^{\sigma}{}_{\gamma\alpha} \frac{\partial A_{\sigma}}{\partial x^{\beta}} - \Gamma^{\sigma}{}_{\gamma\beta} \frac{\partial A_{\gamma}}{\partial x^{\alpha}} + \Gamma^{\sigma}{}_{\rho\alpha} \Gamma^{\rho}{}_{\gamma\beta} A_{\sigma} \end{split}$$

We can ignore the partial derivatives of A, because in the end only the terms in A survive. It is possible to show that

$$R^{\sigma}{}_{\gamma\alpha\beta} = \frac{\partial}{\partial x^{\alpha}} \, \Gamma^{\sigma}{}_{\gamma\beta} - \frac{\partial}{\partial x^{\beta}} \, \Gamma^{\sigma}{}_{\gamma\alpha} + \Gamma^{\sigma}{}_{\alpha\epsilon} \, \Gamma^{\epsilon}{}_{\gamma\beta} - \Gamma^{\sigma}{}_{\beta\epsilon} \, \Gamma^{\epsilon}{}_{\gamma\alpha}$$