

### Study Guide – Midterm 3

## Exam procedures

- Sit in assigned row, as for previous midterms.
- As before, a seating chart will be displayed on the screen when you enter the room.
- A person-by-person list of row assignments will be posted on the wall by the door.
- Photo-ID required.
- Closed book, closed notes. No calculators, cell-phones, etc.

#### What to Know

- You should know about all of the things I have discussed in class.
- This study guide just gives some of the high points.
- Study your lecture notes first, then use your textbook to help you understand your notes.

#### Some general ideas that you should understand:

- Why is Pluto no longer called a planet? What is its connection with the Kuiper Belt?
- Planets orbiting other stars: How do we find them? What are we looking for? What have we found?
- What is the energy source of the Sun? Of other stars?
- How do we know what goes on inside of the Sun and other stars?
- In what ways do stars change during their lifetimes? What simple fact means that they must evolve (i.e. change their interior structure)?
- You should know what the H-R diagram shows, and why it is such an important tool in astronomy.
- How do you find the age of a star cluster? What is the basic principle?
- What are the three possible end states of a star's life? What determines which end state befalls a particular star?
- The basic ideas of General Relativity, and the tests that show that General Relativity describes gravity better than does Newton's Law of Gravity.

#### Some specific numbers to know:

- Age of the Sun ( = age of solar system) = 4.5 billion yrs.
- Predicted lifetime of Sun's core H-burning phase = 10-11 billion years (depends on exactly what you specify as the end-point).



- Deepest layer from which light directly escapes into space.
- Low density and pressure (10<sup>-4</sup>, 0.1 x Earth's surface values)
- But hot (5800° K)
- Granules (in photosphere)
  - Tops of convection currents.



- Transparent gas layer, reaches 2000-3000 km above photosphere.
- T~5,000-10,000° K
- Photosphere = point we can no longer see through chromosphere.

# • Corona

- T > 1,000,000° K
- Very low density: 10-10 atmospheres.
- Heated by magnetic energy.
- Several x diameter of photosphere.





















|   | General Relativity                                                                                                                                                                                                   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | <ul> <li>Gravity = "curvature" in space.</li> <li>Photons, planets etc follow shortest paths through curved space.</li> <li>Analogy: 2D bug on surface that curves into an extra (3<sup>rd</sup>)</li> </ul>         |
| • | <ul> <li>Anadogy. 2D oug on surface that curves into an extra (5') dimension.</li> <li>Einstein's starting point: Equivalence Principle</li> <li>Can't tell difference between gravity &amp; acceleration</li> </ul> |
|   | <ul> <li>or between freefall &amp; no gravity.</li> <li>So <i>any</i> experiment should give same answer in either case.</li> <li>Many proofs that General Relativity is the better description:</li> </ul>          |
|   | <ul> <li>Curved path of starlight as it passes through Sun's gravitational field.</li> <li>"Precession" (gradual change in direction of major axis) of orbit Mercury.</li> </ul>                                     |
|   | Time slows down in strong grav. field even GPS systems are affected.                                                                                                                                                 |
| • | <ul> <li>Black Holes</li> <li>Gravity so strong that escape velocity exceeds speed of light.</li> <li>So light falls back.</li> <li>"Schwarzschild radius" or "event horizon" = radius around mass</li> </ul>        |
|   | concentration within which light can no longer escape to outside.                                                                                                                                                    |

# Pluto

- Why did astronomers start searching for it?
- Did it turn out to be the sort of planet they thought should be there?
- How big is it compared to other objects in nearby orbits?
- Why was it reclassified as a "dwarf planet"?

## Planets orbiting other stars

- So far we have found several hundred planets circling other stars. Most are similar to Jupiter.
- Why are we interested in finding other Earth-like planets?
- How many have we found so far that definitely are habitable?
- How does the "wobble technique" work? (what is the basic idea?)
- What sort of planets is it limited to finding? Why?
- How does the gravitational lensing technique work?
  - Grav. lensing is capable of finding planets of almost any mass, at any distance from their parent stars.

• The Kepler mission

- A telescope in orbit measures brightnesses of 100,000 stars, over and over again.
- "Transit" method look for effect of planet passing between us and its parent star. • What is that effect?
- What sorts of planets can Kepler find?
- Future goal measure spectrum of light reflected off distant Earthlike planets.
  - To search for signs of water, oxygen in planet's atmosphere.
    - What would finding water tell us? What would finding oxygen tell us?
- What is the SETI project? Has it found anything yet?