Chapter 14

The Ideal Gas Law and Kinetic Theory
14.1 *Molecular Mass, the Mole, and Avogadro’s Number*

The **atomic number** of an element is the # of protons in its nucleus. **Isotopes** of an element have different # of neutrons in its nucleus.

The **atomic mass unit** (symbol u) is used to compare the mass of elements. The reference is the most abundant isotope of carbon, which is called carbon-12.

![Atomic Mass Units](image)

\[1 \text{ u} = 1.6605 \times 10^{-24} \text{ g} = 1.6605 \times 10^{-27} \text{ kg} \]

The atomic mass is given in atomic mass units. For example, a Li atom has a mass of 6.941u.

One **mole** (mol) of a substance (element or molecule) contains as many particles as there are atoms in 12 grams of the isotope carbon-12. The number of atoms in 12 grams of carbon-12 is known as Avogadro’s number, \(N_A \).

\[
N_A = 6.022 \times 10^{23} \text{ mol}^{-1}
\]
14.1 Molecular Mass, the Mole, and Avogadro’s Number

The mass per mole (in g/mol) of a substance has the same numerical value as the atomic or molecular mass of the substance (in atomic mass units).

For example, Hydrogen has an atomic mass of 1.00794 g/mol, while the mass of a single hydrogen atom is 1.00794 u.

\[N : \# \text{ of atoms or molecules}, \]
\[n : \# \text{ of moles of element or molecule} \]
\[m_p : \text{atomic mass (amu)} \Rightarrow \text{also grams/mole} \]

\[N = nN_A \]
\[m = nm_p \]
14.1 Molecular Mass, the Mole, and Avogadro’s Number

Example 1 Hope Diamond & Rosser Reeves Ruby

The Hope diamond (44.5 carats) is almost pure carbon. The Rosser Reeves ruby (138 carats) is primarily aluminum oxide (Al_2O_3). One carat is equivalent to a mass of 0.200 g. Determine (a) the number of carbon atoms in the Hope diamond and (b) the number of Al_2O_3 molecules in the ruby.

(a) $n = \frac{m}{\text{Mass per mole}} = \frac{(44.5 \text{ carats}) \left[\frac{(0.200 \text{ g})}{(1 \text{ carat})} \right]}{12.011 \text{ g/mol}} = 0.741 \text{ mol}$

$N = nN_A = (0.741 \text{ mol}) \left(6.022 \times 10^{23} \text{ mol}^{-1} \right) = 4.46 \times 10^{23} \text{ atoms}$

(b) $n = \frac{m}{\text{Mass per mole}} = \frac{(138 \text{ carats}) \left[\frac{(0.200 \text{ g})}{(1 \text{ carat})} \right]}{101.96 \text{ g/mol}} = 0.271 \text{ mol}$

$N = nN_A = (0.271 \text{ mol}) \left(6.022 \times 10^{23} \text{ mol}^{-1} \right) = 1.63 \times 10^{23} \text{ atoms}$
14.2 The Ideal Gas Law

An ideal gas is an idealized model for real gases that have sufficiently low densities, interacting only by elastic collisions.

At constant volume the pressure is proportional to the temperature.

\[P \propto T \]

At constant temperature, the pressure is inversely proportional to the volume.

\[P \propto \frac{1}{V} \]

The pressure is also proportional to the amount of gas.

\[P \propto n \]
Clicker Question 14.1

Under which of the following circumstances does a real gas behave like an ideal gas?

a) The gas particles move very slowly.
b) The gas particles do not collide with each other very often.
c) There are only one kind of particles in the container.
d) The interaction between the gas particles and the walls of the container is negligible.
e) The gas particles just bounce off each other.
Clicker Question 14.1

Under which of the following circumstances does a real gas behave like an ideal gas?

a) The gas particles move very slowly.
b) The gas particles do not collide with each other very often.
c) There are only one kind of particles in the container.
d) The interaction between the gas particles and the walls of the container is negligible.
e) The gas particles just bounce off each other.
14.2 The Ideal Gas Law

THE IDEAL GAS LAW

The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles \(n \) of the gas and is inversely proportional to the volume of the gas.

\[
P = \frac{nRT}{V}
\]

\[PV = nRT\]

\[R = 8.31 \text{ J/(mol} \cdot \text{K)}\]

Another form for the Ideal Gas Law using the number of atoms \(N \)

\[
PV = nRT
\]

\[= N\left(\frac{R}{N_A}\right)T\]

\[PV = NkT\]

\[k = \frac{R}{N_A} = \frac{8.31 \text{ J/(mol} \cdot \text{K)}}{6.022 \times 10^{23} \text{ mol}^{-1}} = 1.38 \times 10^{-23} \text{ J/K}\]
Example 2 Oxygen in the Lungs

In the lungs, the respiratory membrane separates tiny sacs of air (pressure $1.00 \times 10^5 \text{ Pa}$) from the blood in the capillaries. These sacs are called alveoli. The average radius of the alveoli is 0.125 mm, and the air inside contains 14% oxygen. Assuming that the air behaves as an ideal gas at 310K, find the number of oxygen molecules in one of these sacs.

\[
P V = N k T
\]

\[
N_{\text{tot}} = \frac{P V}{k T} = \frac{(1.00 \times 10^5 \text{ Pa}) \left[\frac{4}{3} \pi (0.125 \times 10^{-3} \text{ m})^3 \right]}{(1.38 \times 10^{-23} \text{ J/K})(310 \text{ K})}
\]

\[
= 1.9 \times 10^{14}
\]

\[
N_{\text{Oxy}} = (1.9 \times 10^{14}) \times (0.14) = 2.7 \times 10^{13}
\]
Clicker Question 14.2

An ideal gas is enclosed within a container by a moveable piston. If the final temperature is four times the initial temperature and the volume is reduced to one-fourth of its initial value, what will the final pressure of the gas be relative to its initial pressure, P_1?

a) P_1
b) $8P_1$
c) $16P_1$
d) $P_1/2$
e) $P_1/4$
An ideal gas is enclosed within a container by a moveable piston. If the final temperature is four times the initial temperature and the volume is reduced to one-fourth of its initial value, what will the final pressure of the gas be relative to its initial pressure, P_1?

a) P_1

b) $8P_1$

c) $16P_1$

d) $P_1/2$

e) $P_1/4$

$$P_1V_1 = nRT_1; \quad V_2 = V_1/4; \quad T_2 = 4T_1$$

$$P_2 = \frac{nRT_2}{V_2} = \frac{nR(4T_1)}{V_1/4} = 16 \frac{nRT_1}{V_1} = 16P_1$$
The particles are in constant, random motion, colliding with each other and with the walls of the container.

Each collision changes the particle’s speed.

As a result, the atoms and molecules have different speeds.
The distribution of molecular speeds

- Most probable speed is near 400 m/s at 300 K.
- Most probable speed is near 800 m/s at 1200 K.

The graph shows the percentage of molecules per unit speed interval for different temperatures.
14.3 Kinetic Theory of Gases

KINETIC THEORY

\[\sum F = ma = m \frac{\Delta v}{\Delta t} = \frac{\Delta (mv)}{\Delta t} \]

Average force on each gas molecule when hitting the wall = Final momentum-Initial momentum \over Time between successive collisions

\[= \frac{(-mv) - (+mv)}{2L/v} = \frac{-mv^2}{L} \]

Average force on the wall

\[\bar{F} = \left(\frac{N}{3} \right) \left(\frac{mv^2}{L} \right) \Rightarrow P = \frac{\bar{F}}{A} = \frac{\bar{F}}{L^2} = \left(\frac{N}{3} \right) \left(\frac{mv^2}{L^3} \right) \]

\[PV = \left(\frac{N}{3} \right) mv^2 = \frac{2}{3} N \left(\frac{1}{2} mv^2 \right) \]

\[PV = NkT \quad \bar{KE} = \frac{1}{2} \bar{mv}^2 \quad v_{rms} = \sqrt{\bar{v}^2} \]

Temperature reflects the average kinetic energy of the molecules

\[\frac{3}{2} kT = \frac{1}{2} m v_{rms}^2 = \bar{KE} \]

\[k = 1.38 \times 10^{-23} \text{ J/K} \]
14.3 *Kinetic Theory of Gases*

Example 6 The Speed of Molecules in Air

Air is primarily a mixture of nitrogen \(\text{N}_2 \) molecules (molecular mass 28.0u) and oxygen \(\text{O}_2 \) molecules (molecular mass 32.0u). Assume that each behaves as an ideal gas and determine the rms speeds of the nitrogen and oxygen molecules when the temperature of the air is 293K.

\[
\frac{1}{2} m v_{rms}^2 = \frac{3}{2} kT
\]

\[
v_{rms} = \sqrt{\frac{3kT}{m}}
\]

\(T \) must be in Kelvin

\((K = ^\circ C + 273) \)

\[
\text{Nitrogen molecule} \\
m = \frac{28.0 \text{ g/mol}}{6.022 \times 10^{23} \text{ mol}^{-1}} = 4.65 \times 10^{-26} \text{ kg}
\]

\[
v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3(1.38 \times 10^{-23} \text{ J/K})(293 \text{ K})}{4.65 \times 10^{-26} \text{ kg}}} = 511 \text{ m/s}
\]

Molecules are moving **really fast** but do not go very far before hitting another molecule.
14.3 Kinetic Theory of Gases

THE INTERNAL ENERGY OF A MONATOMIC IDEAL GAS

\[\overline{KE} = \frac{1}{2} m v_{rms}^2 = \frac{3}{2} kT \]
Average KE per atom

multiply by the number of atoms

\[U = N \frac{3}{2} kT = \frac{3}{2} nRT \]
Total Internal Energy

THE INTERNAL ENERGY OF A MOLECULAR GAS
MUST INCLUDE MOLECULAR VIBRATIONS!

H₂, N₂, H₂O, SO₂, CO₂, …(most gases except Nobel gases)
Clicker Question 14.3

Two sealed containers, labeled A and B as shown, are at the same temperature and each contain the same number of moles of an ideal monatomic gas. Which one of the following statements concerning these containers is true?

a) The rms speed of the atoms in the gas is greater in B than in A
b) The pressure within container B is less than the pressure inside container A.

c) The kinetic energy of the atoms in the gas is greater in B than in A.

d) The frequency of collisions of the atoms with the walls of container B are greater than that for container A.

e) The force that the atoms exert on the walls of container B are greater than in for those in container A.
Clicker Question 14.3

Two sealed containers, labeled A and B as shown, are at the same temperature and each contain the same number of moles of an ideal monatomic gas. Which one of the following statements concerning these containers is true?

a) The rms speed of the atoms in the gas is greater in B than in A
b) The pressure within container B is less than the pressure inside container A.

c) The kinetic energy of the atoms in the gas is greater in B than in A.

d) The frequency of collisions of the atoms with the walls of container B are greater than that for container A.

e) The force that the atoms exert on the walls of container B are greater than in for those in container A.
14.4 Diffusion

The process in which molecules move from a region of higher concentration to one of lower concentration is called **diffusion**.

\[m = D A (\Delta C) t / L \]

FICK’S LAW OF DIFFUSION

The mass \(m \) of solute that diffuses in a time \(t \) through a solvent contained in a channel of length \(L \) and cross sectional area \(A \) is

\[m = \frac{DA(\Delta C)t}{L} \]

- \(m \): Mass of the solute
- \(DA(\Delta C)t \): Diffusion term
- \(L \): Length of the channel
- \(D \): Diffusion constant
- \(\Delta C \): Concentration gradient between ends

SI Units for the Diffusion Constant: \(m^2/s \)
14.4 Diffusion

Diffusion analogous to heat flow

\[m = \frac{DA(\Delta C)}{L} \]

Cross-sectional area = \(A \)

\[Q = \frac{kA(\Delta T)}{L} \]

Cross-sectional area = \(A \)

Higher concentration \(C_2 \)

Solute mass flow

Lower concentration \(C_1 \)

Higher temperature \(T_2 \)

Heat flow

Lower temperature \(T_1 \)

Distance = \(L \)
Chapter 15

Thermodynamics
Thermodynamics is the branch of physics that is built upon the fundamental laws that heat and work obey.

The collection of objects on which attention is being focused is called the system, while everything else in the environment is called the surroundings.

Walls that permit heat flow are called diathermal walls, while walls that do not permit heat flow are called adiabatic (NO HEAT FLOW) walls.

To understand thermodynamics, it is necessary to describe the state of a system.
15.2 The Zeroth Law of Thermodynamics

Two systems are said to be in \textit{thermal equilibrium} if there is no heat flow between them when in contact.

Temperature: there is no net flow of heat between two systems in thermal contact that have the \textit{same temperature}.

\textbf{THE ZERO TH LAW OF THERMODYNAMICS}

Two systems individually in thermal equilibrium with a third system are in thermal equilibrium with each other.
1) Suppose that a system only gains heat \((Q)\) and nothing else changes. Consistent with the law of conservation of energy, the internal energy \((U)\) of the system changes:

\[
ΔU = U_f - U_i = Q
\]

\(Q > 0\) system gains heat

2) If a system does work \(W\) on its surroundings but there is no heat flow, (adiabatic) conservation of energy indicates that the internal energy of the system will decrease:

\[
ΔU = U_f - U_i = -W
\]

\(W > 0\) if system does work

THE FIRST LAW OF THERMODYNAMICS
The internal energy of a system changes due to heat and work:

\[
ΔU = U_f - U_i = Q - W
\]

\(Q > 0\) system gains heat
\(W > 0\) if system does work

To determine \(ΔU\), the values of both \(Q\) and \(W\) are required!
Example 1 Positive and Negative Work

In part (a) of figure, the system gains 1500J of heat and 2200J of work is done by the system on its surroundings.

In part (b), the system also gains 1500J of heat, but 2200J of work is done on the system.

In each case, determine the change in internal energy of the system.

\[(a) \quad \Delta U = Q - W = (+1500 \text{ J}) - (+2200 \text{ J}) = -700 \text{ J}\]

\[(b) \quad \Delta U = Q - W = (+1500 \text{ J}) - (-2200 \text{ J}) = +3700 \text{ J}\]
Example 2 An Ideal Gas
The temperature of three moles of a monatomic ideal gas is reduced from 540K to 350K as 5500J of heat flows into the gas.

Find (a) the change in internal energy and (b) the work done by the gas.

\[\Delta U = U_f - U_i = Q - W \]

\[U = \frac{3}{2} nRT \]

(a)
\[\Delta U = \frac{3}{2} nR(T_f - T_i) \]
\[= \frac{3}{2} (3.0 \text{ mol}) \left(\frac{8.31 \text{ J}}{(\text{mol} \cdot \text{K})} \right) (350 \text{ K} - 540 \text{ K}) \]
\[= -7100 \text{ J} \]

(b)
\[W = Q - \Delta U \]
\[= 5500 \text{ J} - (-7100 \text{ J}) \]
\[= 12600 \text{ J} \]
Clicker Question 15.1

The internal energy of a system increases during some time interval. Which one of the following statements concerning this situation must be true?

a) The information given is insufficient to indicate the reason for the increase.

b) The increase in internal energy indicates that heat was added to the system.

c) The increase in internal energy indicates that work was done by the system.

d) The increase in internal energy indicates that heat was removed from the system.

e) The increase in internal energy indicates that work was done on the system.
The internal energy of a system increases during some time interval. Which one of the following statements concerning this situation must be true?

a) The information given is insufficient to indicate the reason for the increase.

b) The increase in internal energy indicates that heat was added to the system.

c) The increase in internal energy indicates that work was done by the system.

d) The increase in internal energy indicates that heat was removed from the system.

e) The increase in internal energy indicates that work was done on the system.
A **quasi-static** process is one that occurs slowly enough that a **uniform**
temperature and pressure exist throughout all regions of the system at all
times.

- **isobaric**: constant pressure
 \[W = F_s = P(A_s) = P \Delta V \]

- **isochoric**: constant volume
 \[W = P \Delta V = 0 \]

- **isothermal**: constant temperature
 \[W = nRT \ln\left(\frac{V_f}{V_i}\right) \text{ ideal gas} \]

- **adiabatic**: no transfer of heat
 \[W = \frac{3}{2} nR \left(T_f - T_i \right) \text{ ideal gas} \]
An *isobaric* process is one that occurs at constant pressure.

\[W = Fs = P(As) = P\Delta V \]

Isobaric process: \[W = P\Delta V = P(V_f - V_i) \]
Example 3 Isobaric Expansion of Water

One gram of water is placed in the cylinder and the pressure is maintained at 2.0×10^5 Pa. The temperature of the water is raised by $31^\circ C$. The water is in the liquid phase and expands by the small amount of 1.0×10^{-8} m3.

Find the work done and the change in internal energy.

\[
W = P \Delta V = \left(2.0 \times 10^5 \text{ Pa}\right) \left(1.0 \times 10^{-8} \text{ m}^3\right) = 0.0020 \text{ J}
\]

\[
Q = mc\Delta T = \left(0.0010 \text{ kg}\right) \left[\frac{4186 \text{ J}}{\text{kg} \cdot ^\circ \text{C}}\right] \left(31 \text{ ^\circ C}\right) = 130 \text{ J}
\]

\[
\Delta U = Q - W = 130 \text{ J} - 0.0020 \text{ J} = 130 \text{ J}
\]
Example 3 Isobaric Expansion of Water Vapor

One gram of water vapor is placed in the cylinder and the pressure is maintained at 2.0 \times 10^5 \text{ Pa}. The temperature of the vapor is raised by 31^\circ \text{C}, and the gas expands by 7.1 \times 10^{-5} \text{ m}^3. Heat capacity of the gas is 2020 \text{ J/(kg-C^\circ)}.

Find the work done and the change in internal energy.

\[W = P\Delta V = (2.0 \times 10^5 \text{ Pa})(7.1 \times 10^{-5} \text{ m}^3) \]
\[= 14.2 \text{ J} \]

\[Q = mc\Delta T \]
\[= (0.0010 \text{ kg})[2020 \text{ J/(kg} \cdot \text{C}^\circ)](31 \text{ C}^\circ) = 63 \text{ J} \]

\[\Delta U = Q - W = 63 \text{ J} - 14 \text{ J} = 49 \text{ J} \]
15.4 *Thermal Processes*

\[W = P \Delta V = P \left(V_f - V_i \right) \]

The work done at constant pressure is the area under a P-V diagram.
15.4 Thermal Processes

isochoric: constant volume

The work done at constant volume is the area under a P-V diagram. The area is zero!

\[W = 0 \]

Change in internal energy is equal to the heat added.

\[\Delta U = Q - W = Q \]
Example 4 Work and the Area Under a Pressure-Volume Graph

Determine the work for the process in which the pressure, volume, and temperature of a gas are changed along the straight line in the figure.

The area under a pressure-volume graph is the work for any kind of process.

\[W = 9 \left(2.0 \times 10^5 \text{ Pa} \right) \left(1.0 \times 10^{-4} \text{ m}^3 \right) = +180 \text{ J} \]