PHY321 Homework Set 8

1. [5 pts] An object of mass m moves in one dimension under the influence of a resistance force either dependent (I) linearly on velocity, $F=-k m v$, or (II) cubically, $F=-k m v^{3}$.
(a) From Newton's law, find the velocity $v(t)$ in the two cases, assuming that the object starts at a velocity v_{0} at $t=0$.
(b) Demonstrate that in the case I, two solutions for $v(t)$, one for some starting v_{01} and another v_{02}, can be linearly combined to represent a valid solution to the equation of motion, representing some v_{03}. Can the solutions be combined in a similar manner for the case II of the force?
2. [10 pts] For an object of mass m moving vertically under the influence of the forces of gravity and air resistance

$$
F=m \ddot{x}=-m g-k m \dot{x}
$$

we obtained in the past the velocity and position as a function of time (see Chapter 2 of the book):

$$
\begin{aligned}
& x=h-\frac{g}{k} t+\frac{1}{k}\left(v_{0}+\frac{g}{k}\right)\left(1-\mathrm{e}^{-k t}\right), \\
& \dot{x}=-\frac{g}{k}+\left(v_{0}+\frac{g}{k}\right) \mathrm{e}^{-k t} .
\end{aligned}
$$

Here x-axis points in the vertical direction and h and v_{0} are the position and velocity, respectively, at $t=0$.
(a) Consider an object with $k=0.3 \mathrm{~s}^{-1}$ released from an elevation of $h=100 \mathrm{~m}$ above the ground. By finding x and \dot{x} for several t and by marking and joining the locations in the $x-\dot{x}$ plane, construct phase-space diagrams for the object released at three different velocities: $v_{0}=40 \mathrm{~m} / \mathrm{s}, 0$ and $-40 \mathrm{~m} / \mathrm{s}$. What form would those diagrams be reaching, if there were no ground and the object could fall down forever? In the terminology of phase-space diagrams, the set of phase-space locations that is approached in the course of an evolution, irrespectively of the initial conditions, is called a strange attractor.
(b) Eliminate time t in favor of \dot{x} and obtain a formal equation $x=x(\dot{x})$ for the phase diagram of the object.
3. [5 pts] A particle of mass m moves in one dimension under the influence of a conservative force for which the potential energy $U(x)$ is shown in the figure. Sketch phase diagrams for the 5 energies of the particle, indicated in the figure. Mark which phase diagram is for which energy.

4. [5 pts] A plane pendulum consisting of a mass m attached to a massless rod of length ℓ starts from rest at an angle θ_{0}. Given that the pendulum spends quarter of its period moving between angles $\theta=0$ and $\theta=\theta_{0}$, the period can be calculated from

$$
\frac{T}{4}=\int_{0}^{T / 4} \mathrm{~d} t=\int_{0}^{\theta_{0}} \frac{\mathrm{~d} t}{\mathrm{~d} \theta} \mathrm{~d} \theta
$$

(a) Use energy conservation to obtain $\mathrm{d} \theta / \mathrm{d} t$ as a function of θ for a given θ_{0}. Use this result under the integral above to arrive at an integral expression for the period T as a function of the maximal angle θ_{0}. Comment on the presence or absence of the dependence of T on m, ℓ and θ_{0}.
(b) Use a small-angle expansion in the subintegral function, to arrive at the period in the $\operatorname{limit} \theta_{0} \rightarrow 0$. Does your result agree with that from solving the equation of motion in the small-angle approximation? Systematic corrections to the latter period, in powers of θ_{0}, may be arrived at by employing Taylor-expansions in the subintegral function of the expression obtained in 4 a . Useful integral: $\int \frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\arcsin x$.
5. [10 pts] If an equation can be put into the form $x=f(x)$, one can attempt to solve that equation by successive substitution of the result from the l.h.s. to the r.h.s. The success of such a procedure depends on properties of the produced iterative map in the vicinity of the solution, and on the choice of a starting value for x. In the following, attempt to solve the listed nonlinear equations by rewriting them into an $x=f(x)$ form (not unique!) and by applying the method of successive substitution. Write out the consecutive values from your substitutions and comment on the outcome.
(a) $x=\cos x$
(b) $-1+x^{2}\left(1+\mathrm{e}^{x}\right)=0$
(c) $x^{2}+x^{5}=1$
6. [5 pts] Consider the mapping function $x_{n+1}=\alpha \sin \left(\pi x_{n}\right)$. Here, α is a constant characteristic for the map, x is restricted to the range $0<x<1$ and the argument of the sine is in radians.
(a) What is the asymptotic value of the mapping function when $\alpha=0.6$? Depending on your starting value, the asymptotic value should be reached, to a very good approximation, in ~ 20 iterations.
(b) What are the two asymptotic values for the mapping function when $\alpha=0.73$?

