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The Grating Spectrometer and Atomic Spectra 
Introduction 
 In the previous experiment diffraction and interference were discussed and at the end a 
diffraction grating was introduced.  In this lab most of the things learned in the last experiment will be 
applied to measure the wavelengths of the lines in the visible spectrum of some elements. You will use a 
diffraction grating mounted on a spectrometer to measure the interference maxima for various 
wavelengths of light.  Knowing the grating spacing, a measurement of the angle gives the wavelength.  
This should be a high precision experiment: you should be able to measure wavelengths within 2% 
before calibration, and .5% after calibration. 

Theory 
Grating Spectrometer 
 In the diffraction experiment we showed that the conditions for constructive interference or 
maxima in the intensity for a double slit are: 
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Here d is the distance between the two slits, θ  is the angle between the incoming beam and the location 
where we observe the intensity (see Fig. 4 of experiment 4) and m is the order number of the 
interference.  In the previous experiment no focusing lenses were used because the fringes were 
observed relatively far away.  The spectrometer in this experiment uses collimator lenses as the large 
distance approximations no longer apply and it has the added advantage that the angle θ  is measured 
directly. 
 The extension from an N = 2 double slit to a grating where N is large is relatively straightforward 
and Eq. 1 remains valid except that d is much smaller than it was for N = 2.  If the wavelength is fixed 
and m = 1, then the angle "θ" at which the first maximum appears increases as d is decreased (N is 
increased).  This is exactly what we studied in the last part of the diffraction experiment.  The higher the 
grating constant, G = 1/d (usually given as lines per mm), the larger the angle for the maxima and the 
better the wavelength can be measured. 
 
Question 1: When the fringe pattern behind the slits is viewed there is always diffraction as well as 
interference, as we learned in the previous experiment.  The individual slits (lines) of the grating, 
however, are usually so narrow that the central maximum of diffraction for each slit sends light into a 
wide range of angles.  The gratings we use have G = 600 lines/mm.  Assuming that the transparent and 
opaque segments are of equal widths (a = d/2), calculate the angular locations of the first diffraction 
minimum for the approximate limits of visible light (400 nm ~ 700 nm). 

Atomic Spectra 
 When the wavelengths of light emitted by excited atomic gases were first studied with precision 
spectrometers, scientists observed that most of the light was emitted at a few discrete wavelengths. In 
this experiment, you will observe the discrete emission lines of hydrogen and a few other atomic gases. 
These discrete lines originate from the de-excitation of atoms. That the lines are discrete was initially a 
great surprise because it implied that the valid energies of electrons in atoms were also discrete. This 
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discovery led to the development of quantum mechanics, which is one of the foundations of modern 
physics.  

   

 

v

electron
proton

r

 
 To put this discovery in perspective, consider what one might have expected if Newton’s laws 
governed the energies of atomic electrons. Atomic hydrogen consists of a proton and an electron, which 

is bound to the proton by the attractive Coulomb force 2

2
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ekF = , where k=8.99x109 N⋅m2/C2, 

e=1.6x10-19C is the magnitude of the electron and proton charges, and r is the distance between them. If 
the electron is in a circular orbit about the proton, as shown above, Newton’s second law, 
(mass)x(centripetal acceleration)=Coulomb force, implies: 
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(The proton is so much heavier than the electron that one can assume that it remains stationary while the 
electron orbits about it.) The potential energy U(r) of the electron can be obtained by integrating the 
Coulomb force from ∞; doing this provides: 
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Thus, the total energy E=1/2mv2+U can be obtained from Equations (2) and (3) and is given by:  
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It is negative because the electron is bound in the attractive Coulomb potential of the proton electric 
field.  

 This derivation, which follows from Newton’s laws, implies that energy of the electron is 
negative and has a arbitrary magnitude that depends only on the radius r of the electron orbit. This turns 
out to be incorrect for small systems like an atom. In fact, the electron in a hydrogen atom cannot be in 
any arbitrary orbit, but only those orbits with energies given by the Bohr formula: 

௡ܧ     ൌ െ13.଺௘௏
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where 1 eV= 1.6x10-19 J and n = 1, 2, 3, 4.....  
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 When an electron makes a transition between an orbit with a higher energy (larger ni) to one with 
a lower energy (smaller nf), it emits a photon which carries off the energy lost by the electron. This 
implies the energies of photons emitted by a hydrogen gas are given by 
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The wavelength of the photon can be obtained from its energy by the Planck formula: 
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Question 2: Only transitions that are in the “Balmer” series with nf = 2, ni=3,4,5,6... are visible to the 
human eye. Calculate the photon energies and wavelengths of the Balmer series for ni=3,4,5,6. These are 
the wavelengths you will be trying to measure. 

Understanding the Spectrometer 
 A spectrometer is a device that allows precise measurements of the angle θ, between two rays of 
light.  Because the light from the source to be studied is often not a narrow beam like a laser, it must be 
gathered and focused by lenses. 
 The light from the source is first passed through a slit, which should be as narrow as possible, 
consistent with letting enough light through to be visible.  The light spreads out from the slit to the 
collimating lens, which makes it into a parallel beam (i.e. the slit is at the focal point of the lens).  The 
parallel beam of light then strikes the "diffraction" grating (G=600 lines/mm to within 2%).  Beyond the 
grating, the light travels in various directions due to diffraction and interference.  If light of a particular 
wavelength and order of interference heads in the direction of the telescope, it will be focused down to 
an image of the slit. 
 
Procedure 
 If the spectrometer is properly adjusted, the image falls on cross hairs at the focusing ring.  This 
image is then examined with an eyepiece (a short focal length converging lens) to see how closely the 
image coincides with the cross hairs.  If the telescope is first used to locate the 0th order of interference 
(straight ahead) and subsequently a first order line, then the difference in the Vernier readings is the 
desired angle Θi.  Diagrams in another document show the location of the controls. 

Part 1 
 In this part we use the red line of a hydrogen lamp with a known wavelength (656.5 nm) as the 
source.  We wish to adjust the spectrometer and to verify that we can actually measure the wavelength 
by measuring the position of the first and second order maxima. 
 Before attempting to move the telescope, be sure that the locking screw is loosened.  When you 
are fine-setting on a line, the locking screw should be tightened and the final adjustment made with the 
fine-adjust screw (clockwise direction only). 
 

1. Adjusting the eyepiece.  By turning the knurled knob, adjust the eyepiece until, with your 
eye relaxed for distant vision, the cross hairs are in focus. 
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2. Adjust the telescope focus by loosening the set screw on top, then sliding the tube in or 
out to focus on a distant object, so that there is no parallax between cross hairs and slit 
image.  This can be checked by moving your eye back and forth (from left to right).  The 
slit edges should be crisp, and wider than the cross hairs but not enormously so.  You 
may have to open the slits up a bit for dim lines, or tighten them to see closely separated 
bright lines. 

 
3.  Now set the angle scale to 0 degrees at the straight-through position. 
 
4. Swing the telescope to the first order for the red line.  Use the fine adjustment to make 

the line coincide with the cross hair and read the Vernier.  Return to the central image, set 
the image on the cross hair and again read the Vernier.  The difference in the readings is 
the angle θi.  Now locate the first order image on the other side of the central image.  
How many higher orders can you locate?  (Look by eye, with the telescope swung out of 
the way!) Estimate the accuracy of your angular reading. 

 
5. Calculate the wavelength from the position of the maxima and compare it to what you 

expect. 
 

Question 3: Assume that the error in the grating constant G to be negligible and the error in the angle 
measurement fixed (by the Vernier scale).  (this is part of your uncertainty calculation).  The question is, 
based on this error analysis, is it better to measure λ with m=1 (first order interference maximum), or 
m=2 (second order interference)? Is it better to measure λ with large grating constant G or with a small 
G? 

Part 2 
 Measure in first and higher orders as many hydrogen lines as you can see.  If the light is 
favorable you may be able to see four (red, blue-green, purple and deep purple).  You hope to see these 
4 lines (for interference m=1) on each side (left and right).  Your analysis should compare the left and 
right angles for systematic effects, and average the left and right angles or wavelengths for your final 
analysis.  You may be able to see some of the 4 lines in second order (m=2) as well.  The interpretation 
of these and other lines led Bohr to his model of the hydrogen atom which predicts a discrete spectrum 
of light emission rather than continuous.  The spectrum consists of three distinct series called Balmer, 
Lyman and Paschen Series.  Each Series represents certain energy transitions from higher levels to a 
specific lower level in the hydrogen atom.  The specific lower levels are n = 1 for Lyman, n = 2 for 
Balmer and n = 3 for Paschen.  As discussed previously, only the Balmer Series transitions are in the 
visible range of the spectrum.  The Lyman Series is in the ultraviolet and Paschen Series is in the 
infrared.  Compare the wavelengths you measure with the expected lines from the Balmer Series.  
Calculate the error in your measurement of the wavelength. 
 
Question 4: How much does this left-right averaging improve your error?  Do you have any evidence of 
L/R systematic error that this cancels?  What might cause such a L/R asymmetry? 
 
Calibration: Calibration is using known information to determine characteristics of your measurement 
instrument. You use a single diffraction grating during the whole lab.  Thus its grating constant 
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uncertainty is a systematic error for this experiment.  Since the wavelength is directly proportional to d, 
calculate the ratio λ/ λ_expected for the H lines you observe, and use this to find a best value for d.   
 
Question 5: How much does this calibration improve your error?  Is the calibrated value of d compatible 
with the stated uncertainty, if you test by t value? 

Part 3 
 Select a Hg light source from the ones that are available and measure the wavelength of a few of 
the strongest lines.  You should use the calibrated value of d from part 2.  (does this improve your 
agreement with the expected wavelengths for Hg?) You may in addition look at and describe another 
lamp with different atoms.  Use the links below, or a Handbook of Chemistry and Physics to identify the 
prominent lines in Hg you picked, and compare them to your measurements.   
http://www.uvp.com/pdf/wavelengths.pdf  (a published paper, though for a pure isotope) 
http://www.kayelaby.npl.co.uk/general_physics/2_5/2_5_5.html 
 
In deciding whether your line coincides with the line of an element, you must have some estimate of the 
precision of your measurement.  You must also consider only the most intense lines in the tables. 
 
 
Question 6: Which interference maximum gives the most accurate results?  Does this agree with you 
answer to question 3?  If not, why not? 
 
 
Vernier Angle Scale:  You can read the angle from a precise protractor scale on the outer rim of the 
table.  Use the Vernier scale with the little magnifying glass to read the angle to the nearest arc minute.  
(1 arcmin = 1' = 1 60/ degree.)  The following is an example: 

0                   10                   20                  30

40                                           50  
Figure 5 

 In this example, the zero line of the Vernier scale (the upper scale) is between 40.5° and 41°, so the 
angle is somewhere between 40° 30' and 41°.   The Vernier scale tells exactly where in between.  
Look along the Vernier for the line that exactly lines up with the line below it.  In this case, it's the 
17' line.  So the angle is 40° 47', which we get by adding 17' to 40° 30'.   In order to use this 
measurement, we must convert it to decimal degrees: 40 + (47/60) degrees = 40.78°. 


