Math-19 Jan 2012

- Announcements
- Homework 1 is due on Tues, the 24th.
- Office hours: Tues, Thurs, 12:00-1:00
- A few scribes have not sent answers to their questions. Get them in!
- Outline

4-vectors

- Spacetime diagram, t and x axis in a moving frame
- Transformations
- More sophisticated notation
- What is conserved?

4-vectors

The position of an event (t, x, y, z) is a 4 vector.
Q : In what ways is it different from a set of 4 numbers?

Spacetime diagram

A spacetime diagram is a plot of position and time. We use the same units for space and time; e. g., meters and time-meter (the time for light to travel a meter).
Kristen is moving at speed 0.2 . At time $t=0$, she is at $x=1$. Her worldline (position vs time) is on the plot. Carlos is moving at he same speed At ime $t=0$, he is at $x=0$

Consider the distance ${ }^{2}$ between the origin and events on her worldline. Calculate it with the Minkowski metric $d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}$
In[622] $=\operatorname{dist} 2\left[\mathbf{t}_{-}, \mathbf{v}_{-}\right]:=(\mathbf{1}+\mathbf{v})^{\mathbf{2}} \mathbf{- t}^{\mathbf{2}}$;
$2 \mid 01-19 . \mathrm{nb}$
n[625]: $=$ Plot [dist2[t, . 2], \{t, 0, 1.4\}, ImageSize \rightarrow 300, Evaluate@bs, AxesLabel \rightarrow \{"t", "distance" $\}]$

Q: The distance ${ }^{2}=0$ for some event. Why? What is the relationship between x and t for this event?

- What event happens at the same time as event O in Kristen's frame?

Why is the distance is a maximum for some time?
To find the time for which distance is a maximum, $\frac{d}{d t}\left[(1-v t)^{2}-t^{2}\right]=0$. The distance is a maximum at

$$
(t, x)=\left(v /\left(1-v^{2}\right), 1 /\left(1-v^{2}\right)\right) .
$$

The maximum distance is $1 /\left(1-v^{2}\right)$.
Recall that distance is an invariant. its is the same in my frame of reference and in Kristen-Carlos' frame.
Because the events on Kristen's world line are at the same x^{\prime} in Kristen-Carlos' frame,
$s^{2}=-t^{\prime 2}+x^{\prime 2}$
is a maximum for $t^{\prime}=0$. Events O and B occur at the same time in Kristen-Carlos frame. We have figured out the x ' axis.

- Regions in spacetime

We have figured out events for which the distance ${ }^{2}$ is greater than 0 and 0 . Since distance is invarient, these events map out regions that have a physical meaning

01 -19.nb |3

$s^{2}=0$ for events O and C . Event O is on the light cone
$s^{2}<0$ Time-like region

- Plots

Transformations

- Lorentz transformation

We found the event $(t, x)=\left(v /\left(1-v^{2}\right), 1 /\left(1-v^{2}\right)\right)$ transforms to $\left(t^{\prime}, x^{\prime}\right)=\left(0,1 /\left(1-v^{2}\right)\right)$ in Kristen-Carlos' frame.
The coordinates of an event (t, x, y, z) become in a frame moving at v in the x direction

$$
\begin{aligned}
& \text { oordinates of an event }(t, x, \\
t^{\prime} & =(t-v x) /\left(1-v^{2}\right)^{1 / 2} \\
x^{\prime} & =(x-v t) /\left(1-v^{2}\right)^{1 / 2} \\
y^{\prime} & =y \\
z^{\prime} & =y
\end{aligned}
$$

$$
z^{\prime}=z
$$

- Rotation
- Translation
- Scale

Operations that make new 4-vectors

A 4 -vector is an object that has the same transformations as (t, x, y, z).
A scalar is an object that is invariant under transformations.
All of the transformations are linear. Therefore if A and B are 4 -vectors and a and b are scalars, $a A+b B$ is a 4 vector.
| 01-19.nb

4-velocity

Construct a new 4 -vector from $(d t, d x, d y, d z)$.
$d \tau=\left[d t^{2}-\left(d x^{2}+d y^{2}+d z^{2}\right)\right]^{1 / 2}$ is a scalar.
Define the 4 -velocity

$$
u \equiv\left(\frac{d t}{d \tau}, \frac{d x}{d \tau} \tau \frac{d y}{d \tau}, \frac{d z}{d \tau}\right)
$$

Since this is the product of a 4 -vector and a scalar, it is a 4 -vector.
The components are
$u=\left(\gamma, \gamma v_{x}, \gamma v_{y}, \gamma v_{z}\right)$,
where $\gamma=\left(1-v^{2}\right)^{-1 / 2}$.
The length ${ }^{2}$ of u is -1 .

4-momentum

Construct a new 4 -vector from the 4 -velocity. Multiply by the rest mass, the mass observed in a frame in which the particle is at est. The 4 -momentum is
$p \equiv m u$.
In components,
$p=m \gamma\left(1, v_{x}, v_{y}, v_{z}\right)$
or
$p=\left(E, p_{x}, p_{y}, p_{z}\right)$
Q: What is the length of p ?
Q : I already know the transformation of p to a frame that is moving with respect to me. Why?

More sophisticated notation

- 4 - vectors written as contravarient vectors

Write a 4-vector a as its components in this way: $\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$
The 0 -th component is the time component. The $1,2,3$ components are $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
Or this way:
Use a Greek letter as a superscript. This is called a contravarient 4 vector

- Metric tensor

The metric is written $g_{\mu \nu}$. Letter g is used.
This is a 4×4 tensor. (We will learn what a tensor is later.) The Schwartzschild metrics that we encountered are diagonal
Minkowski metric
$g_{\mu \nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Schwartzschild metric

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-\left(1-2 \frac{M}{r}\right) & 0 & 0 & 0 \\
0 & \left(1-2 \frac{M}{r}\right)^{-1} & 0 & 0 \\
0 & 0 & r^{2} & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

- Contraction

The length of a contravariant vector is

$$
a \cdot a \equiv \sum_{\mu=0}^{3} \sum_{v=0}^{3} a^{\mu} a^{v} g_{\mu v}
$$

Sule: If the same Greek letter occurs in both the subscript and superscript, sum over it. With is rule,

$$
a \cdot a \equiv a^{\mu} a^{v} g_{\mu \nu}
$$

Covariant vectors
A covarient vector is the contraction of a contravariant vector and the metric tensor.

$$
a_{\mu}=a^{v} g_{\mu \nu}
$$

Example: A contravariant 3 -vector is
$a^{\mu}=(d r, d \theta, d \phi)$
The metric tensor is
$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{2} & 0\end{array}\right)$
$\begin{array}{lll}0 & r^{2} & r^{2} \sin ^{2} \theta\end{array}$
The covariant vector is

$$
a_{\mu}=\left(d r, r^{2} d \theta, r^{2} \sin ^{2} \theta d \phi\right)
$$

Q: If I measured the distance between two points that differ in θ only, would I get the contravariant component, or the covariant component, or something else?

Spacetime near a star

The contravariant vector between two events is

$$
d x=(d t, d r, d \theta, d \phi) .
$$

The metric tensor is

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-\left(1-2 \frac{M}{r}\right) & 0 & 0 & 0 \\
0 & \left(1-2 \frac{M}{r}\right)^{-1} & 0 & 0 \\
0 & 0 & r^{2} & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

The contravariant 4-momentum is

$$
p^{\mu}=m\left(\frac{d t}{d \tau}, \frac{d r}{d \tau}, \frac{d \theta}{d \tau}, \frac{d \phi}{d \tau}\right) .
$$

The covariant 4 -momentum is

$$
p_{\mu}=m\left(-\left(1-2 \frac{M}{r}\right) \frac{d t}{d \tau},\left(1-2 \frac{M}{r}\right)^{-1} \frac{d r}{d \tau}, r^{2} \frac{d \theta}{d \tau}, r^{2} \sin ^{2} \theta \frac{d \phi}{d \tau}\right) .
$$

| 01-19.nb

Q: If I measure the momentum in the ϕ direction, what do I get? What is it called?

Conservation laws, an example

- Gravitational redshift reconsidered

We found ..
For $r_{1}=\infty$,

$$
v(r)=v_{\infty}\left(1-2 \frac{M}{r}\right)^{-1 / 2} .
$$

(1)

Since energy $E=h v, v$ is directly proportional to energy. We know how
The contravariant 4-momentum
$p^{\mu}=\left(p^{0}, p^{r}, p^{\theta}, p^{\phi}\right)$.
The covariant 4-momentum in the time direction

$$
p_{0}=g_{0 \mu} p^{\mu}
$$

Since the metric is diagonal,
$p_{0}=g_{00} p^{0}$
The measured energy is E
$E_{m}^{2}=-\left(p^{0}\right)^{2} g_{00}$
Rewrite as
$E_{m}^{2}=-\left(p^{0}\right)^{2} g_{00}=-\left(g_{00} p^{0}\right)^{2} g_{00}^{-1}=-\left(p_{0}\right)^{2} g_{00}^{-1}$.
Substiture Equation 1 to get
$\left(h v_{\infty}\right)^{2} g_{00}^{-1}=-\left(p_{0}\right)^{2} g_{00}^{-1}$
Therefore

- Noether's theorem

We have discovered a case of Noether's theorem. If the metric does not change by translating a coordinate γ, then the conjugate momentum p_{γ} is conserved.

Here the metric does not depend on time. Therefore Noether's theorem say p_{0} is conserved.
Q: Apply Noether's theorem to the x-coordinate in flat space with coordinates (t, x, y, z). What is conserved?

