13 Mar 2012—Equivalence Principle. Einstein's path to his field equation
15 Mar 2012-Tests of the equivalence principle
20 Mar 2012-General covariance. Math. Covariant derivative
22 Mar 2012—Riemann-Christoffel curvature tensor.
27 Mar 2012—Bianchi's identity. Stress-energy tensor. Conservation of energy and momentum.

- Ricci tensor and curvature scalar
- Bianchi's identity
- Stress energy tensor $T^{\mu \nu}$
- Stress energy tensor of a particles
- Stress energy tensor of a perfect gas
- Energy and momentum conservation $\nabla_{\nu} T^{\mu \nu}=0$
- Bianchi's identity is related to energy and momentum conservation

Ricci tensor and curvature scalar, symmetry

The Ricci tensor is a contraction of the Riemann-Christoffel tensor

$$
R_{\gamma \beta} \equiv R^{\alpha}{ }_{\gamma \alpha \beta} .
$$

The curvature scalar is the contraction of the Ricci tensor

$$
R=g^{\beta \gamma} R_{\gamma \beta}
$$

Symmetry properties of the Riemann-Christoffel tensor $R_{\alpha \beta \gamma \delta} \equiv g_{\alpha \sigma} R^{\sigma}{ }_{\beta \gamma \delta}$

1) Symmetry in swapping the first and second pairs

$$
R_{\alpha \beta \gamma \delta}=R_{\gamma \delta \alpha \beta}
$$

2) Antisymmetry in swapping first pair or second pair

$$
R_{\alpha \beta \gamma \delta}=-R_{\beta \alpha \gamma \delta}=-R_{\alpha \beta \delta \gamma}
$$

3) Cyclicity in the last three indices.

$$
R_{\alpha \beta \gamma \delta}+R_{\alpha \delta \beta \gamma}+R_{\alpha \gamma \delta \beta}=0
$$

Example: Curvature scalar for surface of a 2-d sphere

The metric is

$$
d s^{2}=a^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

The nonzero parts of the Christoffel symbol are

$$
\begin{aligned}
& \Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta \\
& \Gamma^{\phi}{ }_{\theta \phi}=\Gamma^{\phi}{ }_{\phi \theta}=-\sin \theta \cos \theta
\end{aligned}
$$

The Riemann-Christoffel tensor is in general

$$
R^{\sigma}{ }_{\gamma \alpha \beta}=\frac{\partial}{\partial x^{\alpha}} \Gamma^{\sigma}{ }_{\gamma \beta}-\frac{\partial}{\partial x^{\beta}} \Gamma_{\gamma \alpha}^{\sigma}+\Gamma_{\alpha \epsilon}^{\sigma} \Gamma_{\gamma \beta}^{\epsilon}-\Gamma_{\beta \epsilon}^{\sigma} \Gamma_{\gamma \alpha}^{\epsilon}
$$

Q/NA: Compute one non-zero component (no sum)

$$
R_{\phi \theta \phi}^{\theta}=\ldots=\sin ^{2} \theta
$$

Q/NA: Compute (no sum) $R^{\theta \phi}{ }_{\theta \phi}$
Q/NA: Compute the Ricci tensor. Answer:

$$
\begin{aligned}
& R^{\theta}{ }_{\theta}=R^{\phi}{ }_{\phi}=a^{-2} \\
& R^{\theta}{ }_{\phi}=R^{\phi}{ }_{\theta}=0
\end{aligned}
$$

Compute the curvature scalar R. Answer $R=2 a^{-2}$
Q: What information is in the curvature scalar?

Bianchi identity

Bianchi's identity: The curvature induced change of a vector carried over the 6 faces of a cube is zero. (Carry in an oriented way, so that the right-handed direction points out.)
Proof: Each side is traversed twice in opposite directions. Therefore the total change is zero.

Q: The $x-y$ planes have been traversed in the figure. Draw the traversal of the $y-z$ planes
In equation form:
The change on the $y-z$ at face at x is

$$
d A_{\sigma}(x)=-A_{\sigma} R_{\gamma y z}^{\sigma}(x) d y d z
$$

The change on the $y-z$ face at $x+d x$ is

$$
d A_{\sigma}(x+d x)=-A_{\sigma} R_{\gamma y z}^{\sigma}(x+d x) d y d z
$$

The change over both faces is

$$
d A_{\sigma}(x+d x)-d A_{\sigma}(x)=-A_{\sigma} \nabla_{x} R_{\gamma y z}^{\sigma} d x d y d z
$$

Q: Is $\nabla_{x} R^{\sigma}{ }_{\gamma y z}$ the same as $\frac{\partial}{\partial x} R^{\sigma}{ }_{\gamma y z}$?
Traverse the face at $x+d x$ in the outward-pointing sense and the face at x in the outward-pointing sense.

The change over all 6 faces is

$$
A_{\sigma} d x d y d z\left(\nabla_{x} R_{\gamma y z}^{\sigma}+\nabla_{y} R_{\gamma z x}^{\sigma}+\nabla_{z} R_{\gamma x y}^{\sigma}\right)
$$

and since each side in traversed in opposite directions, it is zero.

We chose x, y, and z, but we could have also chosen t for one of the directions. Therefore, we have proved the Bianchi identity,

$$
\nabla_{\alpha} R_{\tau \beta \gamma}^{\sigma}+\nabla_{\beta} R_{\tau \gamma \alpha}^{\sigma}+\nabla_{\gamma} R_{\tau \alpha \beta}^{\sigma}=0
$$

A contracted form of the Bianchi identity is:

$$
\nabla_{\mu}\left(R^{\mu v}-\frac{1}{2} g^{\mu v} R\right)=0
$$

- Fig

Stress-energy tensor without gravity

Definition of the stress-energy tensor $T^{\alpha \beta}$.

1) Let u^{β} be the 4 -velocity of the observer. Then

$$
T^{\alpha}{ }_{\beta} u^{\beta}=T_{\beta}{ }^{\alpha} u^{\beta}=-d p^{\alpha} / d \text { volume }
$$

is the density of 4-momentum. $-T^{\alpha}{ }_{\beta} u^{\beta} d x d y d z$ is the 4-momentum in a box.
Q : Let n^{α} be a unit vector. What is $T_{\alpha \beta} u^{\beta} n^{\alpha}$?
2) Let i and j be indices in space. $T_{i j}=T_{j i}$ is the force in the i direction on a unit surface perpendicular to the j direction. It is also the force in the j direction on a unit surface perpendicular to the i direction.
Q: What is $T_{x x}$?

- Stress energy tensor for a swarm of particles

The particles have mass m and 4-velocity u. Their momentum is $p=m u$. There are n particles per unit volume in the frame of the particles.

In a frame in which the particles are moving, the flux of particles is

$$
s=n u
$$

The x component of s is the number of particles per second crossing a unit area perpendicular to the x-direction.
$s^{0}=n\left(1-v^{2}\right)^{-1 / 2}$.
Q: What is the reason for the factor $\left(1-v^{2}\right)^{-1 / 2}$?
Since each particle carries momentum p, the density of 4-momentum is

$$
\begin{aligned}
& T^{\alpha 0}=p^{\alpha} s^{0} \\
& =m u^{\alpha} n u^{0}
\end{aligned}
$$

and the flux of 4-momentum is

$$
\begin{aligned}
& T^{\alpha \mathrm{i}}=p^{\alpha} s^{\iota} \\
& =m u^{\alpha} n u^{i}
\end{aligned}
$$

All together,

$$
T^{\alpha \beta}=m n u^{\alpha} u^{\beta} .
$$

- Stress energy tensor for a perfect gas

Consider the frame in which the gas is at rest.

The T^{00} term is the sum of $m n u^{0} u^{0} . m u^{0}$ is the mass-energy of the particle. $n u^{0}$ is the number density. The product is the massenergy density ρ.

The T^{xx} term is the sum of $m n u^{x} u^{x}$. What is this?

$$
T^{\alpha \beta}=\left(\begin{array}{cccc}
\rho & 0 & 0 & 0 \\
0 & P & 0 & 0 \\
0 & 0 & P & 0 \\
0 & 0 & 0 & P
\end{array}\right)
$$

where ρ is the mass-energy density and P is the pressure.
Q: There are gas particles moving in the x and y directions. Why don't they transfer momentum across the y -z plane in the y direction?

In some other frame, let u be the 4 -velocity of the gas. In this frame,

$$
T^{\alpha \beta}=(\rho+P) u^{\alpha} u^{\beta}+P \eta^{\alpha \beta}
$$

ρ and P are the mass-energy density and pressure in the rest frame; they are scalars. This is clearly a tensor.
Check that it is correct in the frame in which the fluid is at rest: $u^{\alpha}=(1,0,0,0)$.

$$
\begin{aligned}
& T^{00}=(\rho+P)(1)(1)+P(-1)=\rho . \\
& T^{11}=(\rho+P)(0)(0)+P(1)=P .
\end{aligned}
$$

Conservation of energy and momentum

The divergence of the stress-energy tensor is 0

$$
\frac{\partial}{\partial x^{\beta}} T^{\alpha \beta}=\frac{\partial}{\partial t} T^{\alpha 0}+\frac{\partial}{\partial x} T^{\alpha \mathrm{x}}+\frac{\partial}{\partial y} T^{\alpha y}+\frac{\partial}{\partial z} T^{\alpha \mathrm{z}}=0
$$

Interpretation: Integrate this inside a fixed 3-d box

$$
\begin{aligned}
& \int\left(\frac{\partial}{\partial t} T^{\alpha 0}+\frac{\partial}{\partial x} T^{\alpha x}+\frac{\partial}{\partial y} T^{\alpha y}+\frac{\partial}{\partial z} T^{\alpha z}\right) d x d y d z \\
& =\frac{\partial}{\partial t} \int T^{\alpha 0} d x d y d z+\int T^{\alpha x}(x+d x) d y d z-\int T^{\alpha x}(x) d y d z+\ldots=0
\end{aligned}
$$

We said that $T^{\alpha 0}$ is the density of the α component of the 4 momentum, and $T^{\alpha \mathrm{x}}$ is the flux of the the α component of the 4 momentum in the x direction $\left(d p^{\alpha} / s / m^{2}\right)$
The change in the amount of p^{α} inside the box + the amount going out through the surfaces is zero.

Stress-energy tensor with gravity

Q: What is the rule for including gravity?
Energy-momentum conservation is

$$
\nabla_{\alpha} T^{\alpha \beta}=0
$$

For a perfect gas,

$$
T^{\alpha \beta}=(P+\rho) u^{\alpha} u^{\beta}+P g^{\alpha \beta}
$$

Conservation of energy and momentum is related to Bianchi's identity

Energy-momentum conservation is
$\nabla_{\alpha} T^{\alpha \beta}=0$.

A contracted form of the Bianchi identity is:

$$
\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)=0
$$

Q: Is energy-momentum conservation is a principle of physics or geometry? Is the Bianchi identity is a principle of physics or geometry?

Einstein's Field Equation is

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=-8 \pi G T^{\mu \nu}
$$

Q: In light of Einstein's equation, what is surprising about the conservation of energy and momentum?

29 March—Einstein's discovery of the field equation

